Produkte Products

Prüfbericht-Nr.: Test Report No.:	50085060 00	1	Auftrags-Nr.: Order No.:	154247265	Seite 1 von 3 Page 1 of 3
Kunden-Referenz-Nr.: Client Reference No.:	459803		Auftragsdatu Order date:	m: 11.05.2017	
Auftraggeber: Client:				HNOLOGY CO., LTI strict Jiangsu 21516	
Prüfgegenstand: Test item:	Hybrid inverte	r			
Bezeichnung / Typ-Nr.: Identification / Type No.:	GW3048-EM,	GW3648-EM,GV	V5048-EM		
Auftrags-Inhalt: Order content:	Corrections				
Prüfgrundlage: Test specification:	NRS 097-2-1:	2017			
Wareneingangsdatum: Date of receipt:	05.06.2017				<mark>.</mark>
Prüfmuster-Nr.: Test sample No.:	1#				
Prüfzeitraum: Testing period:	10.06.2017 –	30.06.2017		0	•
Ort der Prüfung: Place of testing:	See page 2				
Prüflaboratorium: Testing laboratory:	TÜV Rheinlan (Shanghai) Co	-			
Prüfergebnis*: Test result*:	Pass		A A A A A A A A A A A A A A A A A A A	ATTICE IN A DATA DATA DATA DATA DATA DATA DATA D	
geprüft von / tested by:	0		kontrolliert v	on I reviewed by:	
19.08.2017 Billy Chen/	Tester Kl	IN Q.	19.08.2017	Tobias Yang / Review	er
Datum Name / Stellu	ing i	Interschrift	Datum	Name / Stellung	Unterschrift
Date Name / Positi Sonstiges / Other: The report 50085060 001		<u>Signature</u> 07.2017 was car		Name / Position	<u>Signature</u>
Zustand des Prüfgegen Condition of the test item		nlieferung:		Ilständig und unbeso plete and undamage	
Legende: 1 = sehr gut P(ass) = entspricht o.g		3 = befriedigend F(ail) = entspricht nich	nt o.g. Prüfgrundlage(5 = mangelhaft N/T = nicht getestet
egend: $1 = very \ good$ P(ass) = passed a.m.	2 = good test specification(s)	3 = satisfactory F(ail) = failed a.m. tes	t specification(s)	4 = sufficient N/A = not applicable	5 = poor N/T = not tested
Dieser Prüfbericht bez auszugsweise vervie his test report only relates to dup	elfältigt werden. o the a. m. test sa	Dieser Bericht be ample. Without per	erechtigt nicht z rmission of the te	ur Verwendung eine	s Prüfzeichens.

TUV Rheinland (Shanghai) Co., Ltd. No.177, 178, Lane 777 West Guangzhong Road, Jing'an District, Shanghai, China

NRS 097-2-1 GRID INTERCONNECTION OF EMBEDDED GENERATION PART 2: SMALL-SCALE EMBEDDED GENERATION – Section 1: Utility interface

Report Reference No:	50085060 001
Tested by (name + signature):	Billy Chen
Approved by (name + signature):	Tobias Yang
Date of issue:	See cove page
Testing Laboratory:	TÜV Rheinland (Shanghai) Co., Ltd.
Address:	No. 177, Lane 777 West Guangzhong Road, Jingan District, Shanghai, P.R.China
Testing location/ procedure:	CBTL TMP WMT SMT RMT CCATL
Testing location/ address:	JIANGSU GOODWE POWER SUPPLY TECHNOLOGY CO., LTD. NO.189 Kun Lun Shan Road Suzhou New District Jiangsu 215163 P.R. China
Applicant's name:	JIANGSU GOODWE POWER SUPPLY TECHNOLOGY CO., LTD.
Address:	NO.189 Kun Lun Shan Road Suzhou New District Jiangsu 215163 P.R. China
Test specification:	
Standard	NRS 097-2-1: 2017
Test procedure:	AK
Non-standard test method:	N/A
Test Report Form No	MS-0025008-appendix 2
Test Report Form(s) Originator:	TÜV Rheinland Group
Master TRF:	2017-05
Copyright © 2013 TÜV Rheinland	Ltd. All rights reserved.
-	ent of the standard NRS 097-2-1:2017.
	xcept in full with prior authorization from TÜV Rheinland Ltd.
Test item description	Hybrid Inverter
Trade Mark:	SOODHE your solar engine
Manufacturer:	JIANGSU GOODWE POWER SUPPLY TECHNOLOGY CO., LTD.
Model/Type reference:	GW5048-EM, GW3648-EM, GW3048-EM
Ratings	See copy of marking plate for details

Report No.: 50085060 001

www.tuv.com

Page 3 of 32

Equipment mobility:	movable	hand-held
	stationary	🖾 fixed
Connection to the mains:	pluggable equipment	direct plug-in
	permanent connection	for building-in
Operating condition:	Continuous Short-t	ime 🗌 intermittent
Over voltage category Mains:		
Over voltage category PV:		
Tested for IT power systems :	Yes	🖂 No
IT testing, phase-phase voltage (V) :	N/A	
Class of equipment :	🖂 Class I	Class II
	Class III	Not classified
Mass of equipment (kg):	18	
Pollution degree	□ PD 1 □ PD 2	🖾 PD 3
IP protection class :	IP65	
Possible test case verdicts:		
- test case does not apply to the test object:	N/A	
- test object does meet the requirement:	Pass (P)	
- test object does not meet the requirement:	Fail (F)	
Testing:		
Date of receipt of test items:	See cover page	
Date(s) of performance of tests:	See cover page	

General remarks

" The test result presented in this report relate only to the object(s) tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

"(see remark #)" refers to remark appended to the report.

"(see Annex #)" refers to an annex appended to the report.

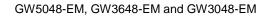
Throughout this report a point is used as the decimal separator.

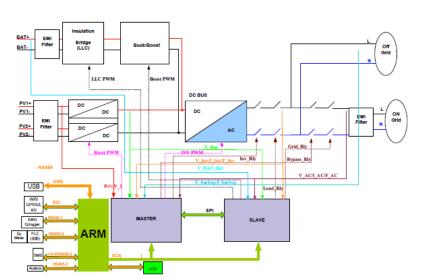
History of report		
Report no.	Issue date	Remarks
50085060 001	10.07.2017	Original report
50085060 001	19.08.2017	 The following items was updated and corrected: Corrected the spelling of word "larger" in clause 4.1.1.10 Updated the clauses 4.2.2.4.3, 4.2.2.4.4, 4.2.2.4.5, 4.2.2.4.6, 4.2.2.4.7, 4.2.4.2.1 and 4.2.4.2.2 Added the THD in Table 4.1.0 Add the general information of test sample and summary of testing. The original report issued on 10.07.2017 was cancelled and replaced by the report 50085060 001 issued on 19.08.2017.

Attachement:

This report also includes attached photo documentation 9 pages

Sumi	mary of test	ing:	Testing location:	
All the test were performed on the GW5048-EM and valid for other models.			All tests as described in Test Case a Measurement Sections were	
Tests	performed	(name of test and test clause)	performed at the laboratory described on page 2.	
Cla	use(s)	Test(s)		
\boxtimes	4.1	Utility compatibility		
\square	4.1.5.1	Flicker		
\boxtimes	4.1.5.3	Voltage change		
	4.1.6.1	Apparent power unblance		
\square	4.1.6.2	Voltage unblance		
\square	4.1.7	Commutation notches		
\square	4.1.8	DC injection		
\square	4.1.10	Harmonics and waveform distortion		
\boxtimes	4.1.11.2	Power factor for sub-categories A1 and A2		
	4.1.11.4	Power factor for sub-categories A3		
	4.1.11.9	Power factor characteristics curve for sub-categories A3		
\square	4.2	Safety protection and controls		
\square	4.2.2.3.2	Over/under voltage		
\boxtimes	4.2.2.3.3	Over/under frequency		
\square	4.2.2.3.3	Active power under over frequency		
\square	4.2.2.4	Prevention of islanding (IEC 62116)		
\square	4.2.2.5	DC current injection		
\boxtimes	4.2.4	Utility Response to recovery		




Description of the test item:

The **Jiangsu Goodwe Power Supply**, type **GW5048-EM**, **230 V a.c.**, **single-phase**, **5000 W. class I**, **IP65**, is a Hybrid inverter designed to work with PV panels up to 550V d.c and batteries up to 60Vd.c.. It is responsible for converting the direct current generated by photovoltaic panels and batteries into single-phase 230 V, 50 Hz alternative current for feeding into the electrical power distribution grid or the backup load. The Hybrid inverter can operates when it is connected to the electrical power distribution line and as a stand-alone unit or in case of AC grid disruption.

Block diagram:

Model list:

The protection device makes up of two in series in each line and netural between inverter and gird. inverter and back-up load.. communicative coupled AC relays so that the equipment could be effectively separated from utility even any one of relays short circuited or works abnormally.

The controlling section is also redundant built. one master DSP. and one slave MCU. The master DSP carries out the main calculation and driving instructions. Slave MCU is responsible for the redundant relay independently. In case any one of two chips breaks down or runs a wrong program. which result to the loss of protection function. the another chip could indicate the fault and disconnect the equipment immediately.

Model:	Model:		GW3648-EM	GW5048-EM
	Max. allowed PV			
	Power(W)	3900	4600	6500
	Nominal DC Power(W)	3300	4000	5500
	Max. DC voltage (V)		550	
0.1	MPPT voltage range (V)		100~500	
Solar	Start feeding voltage (V)		125	
	Max. DC current (A)	11	11/11	
	No. of DC connectors	1	2(can parallel)	
	No. of MPPTs	1	2	
	DC connector	MC4/ Phoenix/ Amphenol(Optional)		
	Battery Type	Lead-acid or Li-Ion		on
	Norminal Voltage(V)	48		
Battery	Max Charge Current (A)*	50		
	Max Discharge Current (A)	50 (configurable))
	Battery capacity (Ah)	>=100 (depending requ	irement)
	Charging curve	3-stage a	daptive with ma	intenance

Page 6 of 32

Report No.: 50085060 001

	Max Charge voltage (V)		60 (configurable)
	Battery temperature compensation		included(Li-Ion)	
	Battery voltage sense		integrated	
	Current shunt		integrated	
	Norminal AC power(VA)	3000	3680	5000
	Max. AC power(VA)	3000	3680	5000
	Max. AC current(A)	13.6	16	22.8
AC Output	Norminal AC output		50/60Hz; 230Va	
Data (On-grid)	AC output range	45~55Hz	z/55~65Hz; 180	~270Vac
(On-grid)	THDi		<3%	
	Power factor	0.8	leading~0.8 lag	ging
	Grid connection		Single phase	
AC Output	AC output (Back-up)		50Hz (60Hz Op (linear load),Sir	
Data	Max. AC current(A)		10	
(Back-up)	Norminal AC power(VA)		2300	
	Peak AC power(VA)**		3500, 10sec	
Efficiency	Max. efficiency		97.6%	
	Euro efficiency		>97.%	
	MPPT adaptation efficiency	99.9%		
	Max Battery efficiency	94.5%		
	Residual current monitoring unit	Integrated		
	Anti-islanding protection	Integrated		
Protection	DC switch(PV)	Integrated(Optional)		
	AC over current protection	Integrated		
	Insulation monitoring		Integrated	
Contifications	Grid regulation	VDE-AR-N 41	05, AS4777.2, G83/G59	VDE0126-1-1
Certifications &Standards	Safety		IEC62109-1&-2	
	EMC		, EN61000-6-2, , EN61000-3-2,	
	Dimensions (W*H*D)		347*432*145mm	า
	Weight (kg)	16		8
	Mounting		Wall bracket	
General Data	Ambient temperature range		-25~60°C	
	Relative humidity		0~95%	
	Max. operating altitude		2000m	
	Protection degree		IP65	
	Cooling	N	lature convectio	n
	Noise emision(dB)		<25	
	Display		LED, APP	
	Communication	LISE	B; RS485;CAN;\	MiFi

			ar engine
Name:Hybrid Inve Type :GW5048-EN	rter	Name:Hybrid Inve Type:GW3648-EN	
Max. PV-generator power	6500W	Max. PV-generator power	4600W
Vmax PV	550Vd.c.	Vmax PV	550Vd.c.
lsc PV	13.8/13.8Ad.c.	Isc PV	13.8/13.8Ad.c
MPPT voltage range	100500Vd.c.	MPPT voltage range	100500Vd.c
Battery rated voltage	48Vd.c.	Battery rated voltage	48Vd.c.
Battery voltage range	40~60Vd.c.	Battery voltage range	40~60Vd.c.
Battery max. charge/discharge current	50/50Ad.c.	Battery max. charge/discharge current	50/50 Ad. c.
Battery type	Lead-acid or Li-Ion	Battery type	Lead-acid or Li-lo
Grid/Backup rated voltage	230Va.c.	Grid/Backup rated voltage	230Va.c.
Grid/Backup frequency	50/60Hz	Grid/Backup frequency	50/60Hz
Grid rated current	22.8/21.7A**a.c.	Grid rated current	16Aa.c.
Grid rated apparent power	5.0/4.6*KVA	Grid rated apparent power	3680VA
Backup rated current	10Aa.c.	Backup rated current	10Aa.c.
Backup rated apparent power	2300VA	Backup rated apparent power	2300VA
Inverter topology	Non-isolated	Inverter topology	Non-isolated
Power factor range	Default >0.99 0.8cap0.8ind	Power factor range	Default >0.99 0.8cap0.8ind
Operating temperature range	-25~60°C	Operating temperature range	-25~60°C
Overvoltage-category	DC II; AC III	Overvoltage-category	DCII; ACIII
IP degree	IP65	IP degree	IP65
Protective class	Class I	Protective class	Class I
Grid-connected standard: VDE-AR- AS/NZS 4777.2:2015;G59/3;G100;C ***:21.7A for Australia *:4.6kVA for VD	EI 0-21;	Grid-connected standard: VDE-AR- AS/NZS 4777.2:2015; G59/3;	N 4105; VDE0126-1-1;
S/N:		S/N:	
TEL: +86 512 6239 7998 EMAIL ADD:NO.189 KunLunShan Road,Suzhou I	.:service@goodwe.com.cn	TEL: +86 512 6239 7998 EMAI ADD:NO.189 KunLunShan Road,Suzhou	.:service@goodwe.com.cn

Report No.: 50085060 001

_

www.tuv.com

Page 8 of 32

Name:Hybrid Inve Type :GW3048-EM	rter	
Max. PV-generator power	3900W	
Vmax PV	550Vd.c.	
Isc PV	13.8Ad.c.	
MPPT voltage range	100500Vd.c.	
Battery rated voltage	48Vd.c.	
Battery voltage range	40~60Vd.c.	
Battery max. charge/discharge current	50/50Ad.c.	
Battery type	Lead-acid or Li-lon	
Grid/Backup rated voltage	230Va.c.	
Grid/Backup frequency	50/60Hz	
Grid rated current	13.6Aa.c.	
Grid rated apparent power	3000VA	
Backup rated current	10Aa.c.	
Backup rated apparent power	2300VA	
Inverter topology	Non-isolated	
Power factor range	Default >0.99 0.8cap0.8ind	
Operating temperature range	-25~60°C	
Overvoltage-category	DC II ; AC III	
IP degree	IP65	
Protective class	Class I	
Grid-connected standard: VDE-AR-N AS/NZS 4777.2:2015;G59/3;		
S/N:	_service@goodwe.com.cn	

Clause

Page 9 of 32

Report No.: 50085060 001


```
NRS 097-2-1
```

Requirement – Test

Result – Remark

Verdict

4.1	Utility compatibility		Р
4.1.1	General		Р
4.1.1.1	This clause describes the technical issues and the responsibilities related to interconnecting an embedded generator to a utility network.		Р
4.1.1.2	The quality of power provided by the embedded generator in the case of the on-site a.c. loads and the power delivered to the utility is governed by practices and standards on voltage, flicker, frequency, harmonics and power factor. Deviation from these standards represents out- ofbounds conditions. The embedded generator is required to sense the deviation and might need to disconnect from the utility network.		Ρ
4.1.1.3	All power quality parameters (voltage, flicker, frequency and harmonics) shall be measured at the POC, unless otherwise specified (see annex A).	See appended table at the end of report for detailed test	Ρ
4.1.1.4	The embedded generator's a.c. voltage, current and frequency shall be compatible with the utility at the POC.		Ρ
4.1.1.5	The embedded generator shall be type approved, unless otherwise agreed upon with the utility (see annex A).		Ρ
4.1.1.6	The maximum size of the embedded generator is limited to the rating of the supply point on the premises.	Shall be evaluated in final installation	N/A
4.1.1.7	The utility will approve the size of the embedded generator and will decide on the connection point and conditions. In some cases it may be required to create a separate supply point.		Ρ
4.1.1.8	Embedded generators larger than 13,8 kVA shall be of the balanced three-phase type unless only a single-phase network supply is available, in which case NRS 097-2-3 recommendations can be applied based on the NMD. NOTE 1 This value refers to the maximum export potential of the generation device/system. NOTE 2 In the case of long feeder spurs the maximum desired capacity of the EG might require approval by the utility and might result in the requirement for a three-phase connection for smaller units.	Not larger than 13.8kVA	Ρ
4.1.1.9	A customer with a multiphase connection shall split the embedded generator in a balanced manner over all phases if the EG is larger than 4,6 kVA. NOTE Balancing phases in a multiphase embedded generator is deemed desirable.	Not larger than 4.6kVA for single phase	Ρ
4.1.1.10	Embedded generators or generator systems larger than 100 kVA may have additional requirements, for example, they must be able to receive communication signals for ceasing generation/disconnection from the utility supply, if the utility requires such. Communication facilities shall be provided to utility at no charge for	Not larger than 100kVA.	N/A

Page 10 of 32

	Fage 10 01 52	Кероп № 500	000000
	NRS 097-2-1		
Clause	Requirement – Test	Result – Remark	Verdic
	integration with SCADA or other system when		
	required. See Annex G (G.1).		
	NOTE The RPP Grid Code requires category A3 units to be able to interface with the utility in order to receive		
	stop and start signals.		
4.1.1.11	In line with the current Renewable Power Plant	Category A1	Р
	Grid Code, embedded generators smaller than 1000 kVA connected to low-voltage form		
	part of Category A generators, with the following		
	subcategories: a) Category A1: 0 – 13,8 kVA;		
	b) Category A2: 13,8 kVA – 100 kVA;		
4.1.1.12	c) Category A3: 100 kVA – 1 MVA. In accordance with SANS 10142-1, all	Considered	
4.1.1.12	generators shall be wired permanently.	Considered	Р
4.1.1.13	Any UPS/generating device that operates in parallel with the grid may only connect to the	Considered	Р
	grid when it complies fully with the requirements		
	of this part of NRS 097. This includes UPS configurations with or without EG.		
4.1.1.14	Standby-generators are covered by SANS	Considered	Р
	10142-1. All generators larger than 100 kVA will be		
4.1.1.15	controllable, i.e. be able to control the active		N/A
	output power dependent on network conditions/abnormal conditions. This includes		
	several smaller units that totals more than 100		
4 4 4 4 0	kVA at a single POC. Maximum DC Voltage may not exceed 1000V.		
4.1.1.16	This is the voltage on the DC side of the	Maximum DC voltage 550Vdc	Р
	inverter, for example when no load is taken and maximum source energy is provided, e.g. peak		
	solar radiation occurs on the solar panels.		
4.1.2	Normal voltage operating range	See appended table	Р
4.1.3	Reference source impedance and short-circuit levels (fault levels)		Р
4.1.4	General QOS requirements		Р
4.1.5	Flicker and voltage changes	See appended table	Р
4.1.6	Voltage unbalance	See appended table	Р
4.1.7	Commutation notches	See appended table	Р
4.1.8	DC injection	See appended table	Р
4.1.9	Normal frequency operating range	See appended table	Р
4.1.10	Harmonics and waveform distortion	See appended table	Р
4.1.11	Power factor		Р
4.1.11.1	Irrespective of the number of phases to which an embedded generator is connected, it shall comply with the power factor requirements in		Р
	accordance with 4.1.11.2 to 4.1.11.12 on each phase for system normal conditions when the output power exceeds 20 % of rated active power:		

Page 11 of 32

NRS 097-2-1				
Clause	Requirement – Test	Result – Remark	Verdict	
L				
4.1.11.2	For static power converter embedded generators and synchronous embedded generators of sub- categories A1 and A2, the power factor shall remain above 0,98 as shown in Figure 1. The embedded generator shall operate anywhere in the shaded area of figure 1.	See appended table	P	
4.1.11.3	For asynchronous embedded generators of sub- categories A1 and A2, which cannot control the power factor over any range, the power factor shall reach the shaded area of figure 1 within 60 s. The power factor shall remain above 0,98 as shown in figure 1. The embedded generator shall operate anywhere in the shaded area. NOTE At the time of publication, this is in contradiction with the RPP Grid Code.		N/A	
4.1.11.4	For static power converter embedded generators and synchronous embedded generators of sub- category A3, the power factor shall remain above 0,95 as shown in Figure 2. The embedded generator shall operate anywhere in the shaded area of Figure 2.		N/A	
4.1.11.5	For asynchronous embedded generators of sub- category A3, which cannot control the power factor over any range, the power factor shall reach the shaded area of Figure 2 within 60 s. The power factor shall remain above 0,95 as shown in Figure 2. The embedded generator shall operate anywhere in the shaded area.		N/A	
4.1.11.6	Where the EG is capable of controlling the power factor at the POC, the EG should improve the power factor at the POC towards unity.		N/A	

Page 12 of 32

NRS 097-2-1				
Clause	Requirement – Test	Result – Remark	Verdic	
4.1.11.7	Unless otherwise agreed with the utility, the standard power factor setting shall be unity for the full power output range.		N/A	
4.1.11.8	The maximum tolerance on the reactive power setting is 5 % of the rated active power.		N/A	
4.1.11.9	For embedded generators of sub-category A3, the power factor shall be settable to operate according to a characteristic curve provided by the utility, if required by the utility, within the range 0,95 leading and 0,95 lagging; An example of a standard characteristic curve is shown in figure 3.		N/A	
	Example of power factor characteristic curve			
4.1.11.10	These limits apply, unless otherwise agreed upon with the utility (see annex A).		Р	
4.1.11.11	Equipment for reactive power compensation shall either: a) be connected or disconnected with the embedded generator, or b) operated via automatic control equipment for disconnection when not required.		Р	
4.1.11.12	The requirement for and type of detuning for reactive power compensation devices will be agreed upon by the owner of the generator and utility.	Confirmed	Р	
4.1.12	Synchronization		Р	
4.1.13	Electromagnetic compatibility (EMC)	Refer to EMC report	Р	
4.1.14	Mains signalling (e.g. PLC and ripple control)	External use PLC will be used, shall be re-evaluated in final installation	N/A	

4.2	Safety and protection		Р
4.2.1	General		Р
4.2.2	Safety disconnect from utility network		Р
4.2.2.1	General		Р
4.2.2.1.1	All SSEG shall comply with the safety requirements in accordance with SANS/IEC 62109-1 and IEC 62109-2. NOTE In principle, IEC 62109 documents only apply to PV inverters. However, other SSEG shall prove compliance to these safety requirements to the satisfaction of the utility.	Refer to IEC 62109-1 and IEC 62109-2 reports	Р
4.2.2.1.2	The embedded generator shall automatically and safely disconnect from the grid in the event of an abnormal condition.		Ρ


Page 13 of 32

Report No.: 50085060 001

NRS 097-2-1

NRS 097-2-1				
Clause	Requirement – Test		Result – Remark	Verdict

4.2.2.2	Disconnection device (previously disconnection switching unit)		Ρ
4.2.2.2.1	The embedded generator shall be equipped with a disconnection device, which separates the embedded generator from the grid due to abnormal conditions. The disconnection unit may be integrated into one of the components of the embedded generator (for example the PV utility. interconnected inverter) or may be an independent device installed between the embedded generator and the utility interface.	PV inverter provided two relays in series used in each line and neutral as disconnection devices	Ρ
4.2.2.2.2	The disconnection switching unit shall be able to operate under all operating conditions of the utility network.	Simulated fault test has been performed, see appended table	Ρ
4.2.2.2.3	A failure within the disconnection switching unit shall lead to disconnection and indication of the failure condition.	Refer to IEC 62109-1 and IEC 62109-2 reports	Ρ
4.2.2.2.4	A single failure within the disconnection switching unit shall not lead to failure to disconnect. Failures with one common cause shall be taken into account and addressed through adequate redundancy.	Refer to IEC 62109-1 and IEC 62109-2 reports	
4.2.2.2.5	The disconnection device shall disconnect the generator from the network by means of two series connected robust automated load disconnect switches.	PV inverter provided two relays in series used in each line and neutral as disconnection devices	Ρ
4.2.2.2.6	Both switches shall be electromechanical switches.	Relays with suitable rating provided	
4.2.2.2.7	Each electromechanical switch shall disconnect the embedded generator on the neutral and the live wire(s). NOTE The switching unit need not disconnect its sensing circuits.	Considered.	
4.2.2.2.8	All rotating generating units, e.g. synchronous or asynchronous generating units shall have adequate redundancy in accordance with 4.2.2.2.5.	PV inverter	N/A
4.2.2.2.9	A static power converter without simple separation shall make use of two series connected electromechanical disconnection switches.	PV inverter provided two relays in series used in each line and neutral as disconnection devices	
4.2.2.2.10	The current breaking capacity of each disconnecting switch shall be appropriately sized for the application. In cases where the disconnecting device is an electromechanical switching device such as a contractor, this requires suitable coordination with the upstream short circuit protection device (circuit breaker).	Considered.	Ρ
4.2.2.2.11	Any programmable parameters of the disconnection switching unit shall be protected from interference by third-parties, i.e. password protected or access physically sealed.	Considered.	Ρ
4.2.2.2.12	In order to allow customers to supply their own load in isolated operation (islanded)	Considered.	Ρ

Page 14 of 32


Report No.: 50085060 001

NRS 097-2-1 Result – Remark Clause Requirement - Test Verdict where this is feasible and required, the disconnection device may be incorporated upstream of part of or all of a customers' loads, provided that none of the network disconnection requirements in this document are violated. 4.2.2.2.13 All EG installations larger than 30 kVA shall have Less than 30kVA N/A a central disconnection device. 4.2.2.2.14 The network and system grid protection voltage No central disconnection N/A and frequency relay for the central disconnection device used. device will be type-tested and certified on its own (stand-alone tested). All clauses of 4.2.2, except 4.2.2.4 (anti-islanding) apply. 4.2.2.3 Overvoltage, undervoltage and frequency Ρ 4.2.2.3.1 General Ρ The values in 4.2.2.3 relate to SSEG in sub-Ρ categories A1 and A2. These are kept from a historical perspective. The Grid Code requirements will override values and requirements in this category. Sub-category A3 generators shall disconnect from the network according to the RPP Grid Code for all abnormal conditions as well as stay connected in accordance with the voltage ridethrough requirements of the RPP Grid Code. 4.2.2.3.2 Overvoltage and undervoltage Ρ The embedded generator in sub-category A1 and See appended table Ρ A2 shall cease to energize the utility distribution system should the network voltage deviate outside the conditions specified in table 2. The following conditions shall be met, with voltages in r.m.s. and measured at the POC. Voltage range (at point of connection) Maximum trip time V < 50 % 0,2 s 50 % ≤ V < 85 % 10 s 85 % ≤ V ≤ 110 % Continuous operation 110 % < V < 115 % 40 s 115% ≤ V < 120% 2 s 0,16 s 120 % ≤ V NOTE If multi-voltage control settings are not possible, the more stringent trip time should be implemented, e.g. 2 s between 110% and 120% of voltage. Y X1 4.2.2.3.3 Overfrequency and underfrequency Ρ See appended table. This requirement is in line with the RPP Grid Ρ Code (version 2.8) and applies to all EG in category A. Ρ 4.2.2.3.3.1 Relaxation for non-controllable generators

Page 15 of 32

Page 15 of 32 Report No.: 50085060 001						
	NRS 097-2-1					
Clause	Requirement – Test	Result – Remark	Verdic			
	Non-controllable generators may disconnect randomly within the frequency range 50.5 Hz to 52 Hz. The disconnect frequency for non-controllable generators will each be set at a random value by the manufacturer, with the option of changing this to a utility provided setting. The random disconnect frequency shall be selected so that all generators from any specific manufacturer will disconnect uniformly over the range with 0,1 Hz increments. When the utility frequency is more than the non- controllable generator over-frequency setpoint for longer than 4 seconds, the non-controllable generator shall cease to energise the utility line within 0,5 s.	See appended table.	P			
4004	δ 0					
4.2.2.4	Prevention of islanding A utility distribution network can become de-	See appended table.	Р			
	energized for several reasons: for example, a substation breaker that opens due to a fault condition or the distribution network might be switched off for maintenance purposes. Should the load and (embedded) generation within an isolated network be closely matched, then the voltage and frequency limits may not be triggered. If the embedded generator control system only made use of passive voltage and frequency out-of-bounds detection, this would result in an unintentional island that could continue beyond the allowed time limits.		Р			
4.2.2.4.2	In order to detect an islanding condition, the embedded generator shall make use of at least one active islanding detection method. An active islanding detection method intentionally varies an output parameter and monitors the response or it attempts to cause an abnormal condition at the utility interface to trigger an out-of-bounds condition. If the utility supply is available, the attempt to vary an output parameter or cause an abnormal condition will fail and no response will be detected. However, if the utility supply network is de-energized, there will be a response to the change which can be detected. This	See appended table.	Ρ			

Page 16 of 32

	Fage 10 01 32	Report No.: 500	00000	
NRS 097-2-1				
Clause	Requirement – Test	Result – Remark	Verdic	
	signals an island condition to the embedded			
	generator upon detection of which the embedded			
	generator shall cease to energize the utility			
	network within a specific time period.			
4.2.2.4.3	Active islanding shall be detected in all cases		Р	
	where the EG interfaces with the utility network. An islanding condition shall cause the embedded	See appended table.		
4.2.2.4.4	generator to cease to energize the utility	See appended table.	Р	
	network within 2 s, irrespective of connected			
	loads or other embedded generators. The			
	embedded generator employing active islanding			
	detection shall comply with the requirements of			
	IEC 62116 (ed.1).			
	NOTE Prevention of islanding measures is only considered			
	on the embedded generator side, i.e. no utility installed anti-			
	islanding measures are considered.			
4.2.2.4.5	All rotating generators shall use a minimum of	Not rotating generator	N/A	
	two islanding detection methods (e.g. rate-of-			
	change-of-frequency and voltage vector shift detection due to the dead bands (slow detection)			
	of islands in both methods).			
	NOTE It is possible for a condition to exist, where a mains-			
	excited generator becomes self-excited due to capacitance of			
	the network (either cable capacitance or power factor			
	correction). Under such conditions, the mains-excited			
	generator will not disconnect from an island, hence effective islanding detection is required for all rotating generators.			
40040	Passive methods of islanding detection shall not	Opposidented	-	
4.2.2.4.6	be the sole method to detect an island condition.	Considered	Р	
	When used, passive methods of islanding			
	detection shall be done by three-phase voltage			
	detection and shall be verified by an AC voltage			
	source.			
4.2.2.4.7	The embedded generator shall physically	Two series connected relays	Р	
	disconnect from the utility network in accordance with the requirements in 4.2.2.2.	used as the disconnection		
		device in both line and neutral		
4.2.2.5	DC current injection		Р	
	The embedded generator shall not inject d.c.	See appended table.	Р	
	current greater than 0,5 % of the rated a.c. output			
	current into the utility interface under any			
	operating condition, measured over a 1-minute interval.			
	The EG shall cease to energize the utility			
	network within 500 ms if this threshold is			
	exceeded.			
4.2.3	Emergency personnel safety		N/A	
	No requirements for emergency personnel safety			
	(e.g. fire brigade) existed at the time of		N/A	
	publication.			
	It is expected that such issues will be dealt with			
	in other documents, e.g. OHS Act, SANS 10142-			
	1.			
4.0.4	Response to utility recovery		_	
4.2.4 4.2.4.1	Response to utility recovery The embedded generator shall ensure		P P	

Page 17 of 32

Report No.: 50085060 001

NRS 097-2-1 Requirement - Test Result – Remark Verdict Clause in accordance with 4.1.12. After a voltage or frequency out-of-range See appended table. 4.2.4.2 Ρ condition that has caused the embedded generator to cease energizing the utility network, the generator shall not re-energize the utility network until the utility service voltage and frequency have remained within the specified ranges for a continuous and uninterrupted period of 60 s. The reconnection shall commence as follows: Non-controllable generators may connect Considered 4.2.4.2.1 Ρ randomly within the 1 minute to 10 minute period after voltage and frequency recovery (period includes the 60 s to confirm recovery). The delay for non-controllable generators will each be set at a random value by the manufacturer, with the option of changing this to a utility provided setting. The random value shall be selected so that no more than 2 % of generators from any specific manufacturer will reconnect within 10s of each other. Controllable generators may reconnect Not controllable generator. 4.2.4.2.2 N/A immediately after the 60 s delay confirming recovery of the system voltage and frequency at a maximum rate of 10 % of rated power per minute, i.e. full power output will only be reached after 10 minutes. This ramp rate may be modified at the request of the utility or in consultation with the utility. Isolation 4.2.5 Ρ In line with SANS 10142-1 (as amended), each Isolation device is not integral 4.2.5.1 Ρ energy source should have its own, part of the unit. The installation appropriately rated, isolation device. instructions specify a isolation device for the final installation. This shall be re-evaluated in final installation It is expected that isolation requirements will be Requirement specified in the 4.2.5.2 Ρ installation instruction, shall be dealt with in more detail in future in e.g. SANS 10142-1/3. Such requirements shall re-evaluated in final installation supersede 4.2.5. The embedded generator shall provide a means The installation instructions 4.2.5.3 Ρ of isolating from the utility interface in order specify a isolation device for to allow for safe maintenance of the EG. The the final installation. This shall disconnection device shall be a double pole for a be re-evaluated in final single-phase EG, a three-pole for a three-phase installation delta-connected EG, and a four-pole for a three phase star-connected EG. The grid supply side shall be wired as the source. The breaking capacity of the isolation circuit-The installation instructions 4.2.5.4 Ρ breaker closest to the point of utility connection specify a isolation device for shall be rated appropriately for the installation the final installation. This shall point in accordance with SANS 60947-2. be re-evaluated in final This disconnection device does not need to be installation accessible to the utility. For dedicated supplies, a means shall be The installation instructions

4.2.5.5

Ρ

Page 18 of 32

Page 18 of 32 Report No.: 50085060 001 NRS 097-2-1				
	provided of isolating from the point of supply in order to allow for safe maintenance of the utility network. The disconnection device shall be a double pole for a single-phase EG, a three-pole for a three-phase delta-connected EG, and a four-pole for a three-phase star-connected EG.	specify a isolation device for the final installation. This shall be re-evaluated in final installation		
4.2.6	Earthing		Р	
4.2.6.1	The electrical installation shall be earthed in accordance with SANS 10142-1. The earthing requirements for different embedded generation configurations in conjunction with the customer network are described in annex B for the most common earthing systems		N/A	
4.2.6.2			Ρ	
4.2.6.3	Where an electrical installation includes a PV power supply system without at least simple separation between the AC side and the DC side, an integrated RCD function shall be present to provide fault protection by automatic disconnection of supply shall be type B according to IEC/TR 60755, amendment 2. Where the PV inverter by construction is not able to feed DC fault currents into the electrical installation, an RCD of type B according to IEC/TR 60755 amendment 2 is not required.	Requirement specified in the installation instruction, shall be re-evaluated in final installation	P	
4.2.7	Short-circuit protection		Р	
4.2.7.1	The embedded generator shall have suitably rated short-circuit protection at the connection to the AC mains in accordance with SANS 10142-1 and 3.	Requirement for using circuit breaker specified in the installation instruction, shall be re-evaluated in final installation	Р	
4.2.7.2	The short-circuit characteristics for the SSEG shall be supplied to the utility.	See instruction manual	Р	
4.2.8	Maximum short-circuit contribution		Р	
	 Embedded generators have the potential to increase the fault level of the network to which it is connected. In order to limit the fault level changes in low voltage networks and allow coordination of fault levels with the utility, no generator will exceed the following fault level contribution: a) for synchronous generators: 8 times the rated current; b) for asynchronous generators: 6 times the rated 	1 times of the rated current for PV inverter.	P	

Page 19 of 32

	NIX3 097-2-1		
Clause	Requirement – Test	Result – Remark	Verdict
	current; and c) for generators with inverters: 1 times the rated current.		
4.2.9	Labelling		Р
4.2.9.1	A label on the distribution board of the premises where the embedded generator is connected, shall state: "ON-SITE EMBEDDED GENERATION (EG) CONNECTED. THE EG IS FITTED WITH AN AUTOMATIC DISCONNECTION SWITCH WHICH DISCONNECTS THE EG IN THE CASE OF UTILITY NETWORK DE-ENERGIZATION."	Requirement specified in the installation instruction, shall be re-evaluated in final installation	P
	WARNING: ON-SITE EMBEDDED GENERATION Do NOT WORK ON THIS QUIPMENT UNTIL IT IS ISOLATED FROM BOTH MAINS AND ON-SITE GENERATION ISOLATE ON-SITE GENERATOR AT ISOLATE MAINS SUPPLY AT		
4.2.9.2	The label shall be permanent, coloured red, and with white lettering of height at least 8 mm.		Р
4.2.9.3	The label shall comply to requirements of SABS 1186-1.		Р
4.2.9.4	The absence of emergency shutdown capabilities will be indicated on signage in accordance with 4.2.2. NOTE: ON-SITE EMBEDDED GENERATION (EG) CONNECTED. READ IMPORT AND EXPORT REGISTERS SEPARATELY	Requirement specified in the installation instruction, shall be re-evaluated in final installation	P
4.2.10	Robustness requirements		Р
	According to 4.2.2.1 all SSEG shall comply with safety requirements in accordance to SANS/IEC 62109-1 and IEC 62109-2.	Refer to IEC 62109-1 and IEC 62109-2 reports.	Р
4.3	Metering	Shall be re-evaluated in final installation	N/A
Annex A	Notes to purchase		
Annex B	Earthing system	Shall be re-evaluated in final installation	N/A

Page 20 of 32

Table 4.1.5	Voltage fluctuat	ons and flicker		Р
Reference Im	pedance used:		L=0.15+0.15j, N=0.1+0.	1j
		Pst (Limits:	0.35)	
Int	erval	Phase A	Phase B	Phase C
	1	0.19	N/A	N/A
	2	0.19	N/A	N/A
	3	0.17	N/A	N/A
	4	0.17	N/A	N/A
	5	0.21	N/A	N/A
	6	0.19	N/A	N/A
	7	0.18	N/A	N/A
	8	0.20	N/A	N/A
	9	0.18	N/A	N/A
	10	0.19	N/A	N/A
	11	0.19	N/A	N/A
	12	0.18	N/A	N/A
F	Pit =	0.3	N/A	N/A

TABLE 4.1.5.3 Rapid voltage change			Р		
Mains voltage: 230	Mains voltage: 230V				
Switching actions			≺i		
Marking operation without default (to primary energy carrier) 0.			0.5		
Marking operation at reference conditions(of primary energy carrier) 1			.0		
Breaking operation at nominal power 1.			.0		
Worst case value	of all switching operations Ki max	1	.0		

Page 21 of 32

Table 4.1.7	Commutation notches								
	utation notches curr	ent [A]							
Between 2	5% Pemax and 35% Pemax	1.1	1.5	1.3					
Between 6	5% Pemax and 75% Pemax	0.0	0.0	0.0					
	> 90 PEmax	0.0	0.0	0.0					

Table 4.1.8	DC inje	ection			Р		
Rated output of	current		Measured value [mA]			
[A]		Phase A	Phase B	Phase C	Limit [mA]		
			100% output				
20		80			100		
			75% output				
20		90			100		
	50% output						
20		40			100		
			25% output				
20		60			100		
			10% output				
20		30			100		
Injected DC c	urrent	Tu	Irn off time measured	[ms]			
exceeded 1%	rated				Limit [ms]		
current [/	4]	Phase A	Phase B	Phase C			
0.15		210			500		
Remark:							

TABLE 4.1.10	Harmonics and wayotorm distortion									
Harmonics	100%Pn	Limits	Harmonic	s 100%Pn	Limits					
Order	[%]	I[%]	Frequenc [Hz]	y [[%]	[%]					
2	0.478	1	75	0.098	0.1					
3	1.271	4	125	0.045	0.1					
4	0.159	1	175	0.036	0.1					
5	0.436	4	225	0.037	0.1					
6	0.165	1	275	0.041	0.1					
7	0.669	4	325	0.047	0.1					
8	0.130	1	375	0.052	0.1					
9	0.193	4	425	0.059	0.1					
10	0.204	1	475	0.060	0.1					
11	0.301	2	525	0.059	0.1					
12	0.145	0.5	575	0.060	0.25					
13	0.205	2	625	0.060	0.25					
14	0.153	0.5	675	0.059	0.25					
15	0.221	2	725	0.063	0.25					
16	0.114	0.5	775	0.075	0.25					
17	0.141	1.5	825	0.075	0.25					
18	0.095	0.38	875	0.067	0.19					
19	0.134	1.5	925	0.049	0.19					
20	0.087	0.38	975	0.044	0.19					

Report No.: 50085060 001

www.tuv.com

Page 23 of 32

21	0.118	1.5	1025	0.043	0.19
22	0.096	0.38	1075	0.041	0.19
23	0.092	0.6	1125	0.040	0.19
24	0.100	0.38	1175	0.039	0.08
25	0.085	0.6	1225	0.038	0.08
26	0.079	0.15	1275	0.036	0.08
27	0.074	0.6	1325	0.034	0.08
28	0.080	0.15	1375	0.031	0.08
29	0.072	0.6	1425	0.030	0.08
30	0.070	0.15	1475	0.029	0.08
31	0.086	0.6	1525	0.030	0.08
32	0.076	0.15	1575	0.031	0.08
33	0.083	0.6	1625	0.028	0.08
34	0.069	0.15	1675	0.029	0.08
35	0.070	0.3	1725	0.025	0.08
36	0.062	0.08	1775	0.024	0.03
37	0.055	0.3	1825	0.024	0.03
38	0.058	0.08	1875	0.024	0.03
39	0.055	0.3	1925	0.027	0.03
40	0.060	0.08	1975	0.026	0.03
42	0.115	0.08			
43	0.099	0.3			
50	0.091	0.08			
THD	1.754	5			

TABLE4.1.1	1.2	Powe	er factor for ge	nerators of sub-	-categories A1 a	nd A2	Р				
P/Pn (%)	DC in Voltaç		DC input current (A)	Output voltage (V)	Output current (A)	Power factor	Limit				
				A:230.05	A:1.92	A:0.939					
10%	374	.86	1.16	B:	В:	B:					
				C:	C:	C:					
				A:230.09	A:4.69	A:0.991					
25%	367	.17	3.09	B:	В:	B:	0.98				
				C:	C:	C:					
				A:230.23	A:9.19	A:0.998					
50%	353	353.25 6.4		B:	B:	B:	0.98				
				C:	C:	C:					
				A:230.44	A:14.67	A:0.999					
75%	338	338	338	338	338	.05	10.68	B:	B:	B:	0.98
				C:	C:	C:					
				A:230.55	A:19.7	A:0.999					
100%	321.67		15.01	B:	B:	B:	0.98				
			C:	C:	C:						
Remark:											

4.2.2.3.2	Table: Overvolta	age and und	er-voltage/ Voltage-ride	e-through		Р					
Target value	e U	Trip value (V)			Limit(s)	Remark					
For phase A											
U<50%Ur		114V	49%Ur≤U<50%Ur	0.180	≤0.2	Trip vlaue : 112.7V to 115V					
50 %Ur ≤ U	< 85 %Ur	194V	84%Ur≤U<85%Ur	9.936	0.6 to 10	Trip vlaue : 193.2V to 195.5V					
85 %Ur ≤ U	≤ 110 % Ur					Continuous operation					
110 % Ur <	U < 115 % Ur	254V	110%Ur <u≤111%ur< td=""><td>39.934</td><td>≤40</td><td>Trip vlaue : 253V to 255.3V</td></u≤111%ur<>	39.934	≤40	Trip vlaue : 253V to 255.3V					
115 %Ur ≤ U < 120%Ur		266V	115%Ur≤U≤116%Ur	0.086	≤2	Trip vlaue : 264.5V to 266.8V					
120%Ur ≤ L	J	277V	120%Ur≤U≤121%Ur	0.051	≤0.16	Trip vlaue : 276V to 278.3V					
			For phase B								

Page 25 of 32

U<50%Ur	N/A	49%Ur≤U<50%	N/A	≤0.2	Trip vlaue : 112.7V to
				-0.2	115V
50 %Ur ≤ U < 85 %Ur	N/A	84%Ur≤U<85%	N/A	0.6 to 10	Trip vlaue : 193.2V to 195.5V
85 %Ur ≤ U ≤ 110 % Ur					Continuous operation
110 % Ur < U < 115 % Ur	N/A	110%Ur <u≤111%< td=""><td>N/A</td><td>≤40</td><td>Trip vlaue : 253V to 255.3V</td></u≤111%<>	N/A	≤40	Trip vlaue : 253V to 255.3V
115 %Ur ≤ U < 120%Ur	N/A	115%Ur≤U≤116%	N/A	≤2	Trip vlaue : 264.5V to 266.8V
120%Ur ≤ U	N/A	120%Ur≤U≤121%	N/A	≤0.16	Trip vlaue : 276V to 278.3V
		For phase C			
U<50%Ur	N/A	49%Ur≤U<50%	N/A	≤0.2	Trip vlaue : 112.7V to 115V
50 %Ur ≤ U < 85 %Ur	N/A	84%Ur≤U<85%	N/A	0.6 to 10	Trip vlaue : 193.2V to 195.5V
85 %Ur ≤ U ≤ 110 % Ur					Continuous operation
110 % Ur < U < 115 % Ur	N/A	110%Ur <u≤111%< td=""><td>N/A</td><td>≤40</td><td>Trip vlaue : 253V to 255.3V</td></u≤111%<>	N/A	≤40	Trip vlaue : 253V to 255.3V
115 %Ur ≤ U < 120%Ur	N/A	115%Ur≤U≤116%	N/A	≤2	Trip vlaue : 264.5V to 266.8V
120%Ur ≤ U	N/A	120%Ur≤U≤121%	N/A	≤0.16	Trip vlaue : 276V to 278.3V
Remark:	·		-	•	
· · · · · · · · · · · · · · · · · · ·					

Page 26 of 32

Report No.: 50085060 001

4.2.2.3.3	Ove	er-frequency ar	r-frequency and under-frequency									
Target value	F	Trip value (Hz)		Trip valu	e limits (Hz)	Trip time(s)	Limit (s)	Remark				
F< 47 Hz		46.98	98		5 ≤ F< 47	0.182	≤0.2	Trip vlaue : 276V to 278.3V				
47≤ F≤ 50.5	Hz							Normal operation				
F> 52Hz		52.03		52 <	F≤ 52.05	4.432	4 to 4.5	Trip vlaue : 276V to 278.3V				
Step #		Set output power [%]		quency [Hz] 0 mHz]	Expected power value [W]	Actual power values [W]	Limit	Graph point				
1		100	2	17.50	4600	4576		t1				
2		100	5	50.40	4600	4572		t2				
3		100	5	50.55	4447	4480	· 0.50/ Do	t3				
4		100	Ę	51.00	3067	3086	± 2.5% Pn	t4				
5		100	Ę	51.50	1533	1604]	t5				
6		100	5	50.11	4600	4579		t6				
7	7 100 50.00				4600	4574	Pn	t7				
Note: 50.5Hz: 100% 52.0 Hz: 25%F When the utilit	M	uency exceeds !				able at the time sh	all be stored a	as the maximum				

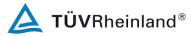
When the utility frequency exceeds 50.5 Hz. the active power available at the time shall be stored as the maximum power value P_M ; this value P_M shall not be exceeded until the frequency has stabilized below 50.5 Hz for at least 4 seconds.

Report No.: 50085060 001

www.tuv.com

Page 27 of 32

4.2.2.4 `TA	BLE: P	revention	of isla	nding (IE	C 621′	16)			Р
				F	ower	100%			
Conditions	F	₽w [w]	G	Q∟[VA]	C	Qc[VA]	Qf	Trip time [ms]	Limitation [ms]
D	L1:	4.149	L1:	5.038	L1:	4.590	1.16		
R: 90% L / C: 110%	L2:		L2:		L2:			121	2000
_,	L3:		L3:		L3:		0.00		
	L1:	4.149	L1:	4.809	L1:	4.590	1.13		
R: 90% L / C: 105%	L2:		L2:		L2:			177	2000
2, 01 100/0	L3:		L3:		L3:				
	L1:	4.149	L1:	4.580	L1:	4.590	1.11		
R: 90% L / C: 100%	L2:		L2:		L2:			354	2000
27 0. 10070	L3:		L3:		L3:				
	L1:	4.149	L1:	4.351	L1:	4.590	1.08		
R: 90% L / C: 95%	L2:		L2:		L2:			153	2000
L/ 0. 3370	L3:		L3:		L3:				
	L1:	4.149	L1:	4.122	L1:	4.590	1.05	33	
R: 90% L / C: 90%	L2:		L2:		L2:				2000
L7 0. 3070	L3:		L3:		L3:				
	L1:	4.380	L1:	5.038	L1:	4.590	1.10		
R: 95% L / C: 110%	L2:		L2:		L2:			110	2000
L/ 0. 110/0	L3:		L3:		L3:				
	L1:	4.380	L1:	4.122	L1:	4.590	0.99		
R: 95% L / C: 90%	L2:		L2:		L2:			134	2000
L/ C. 3070	L3:		L3:		L3:				
	L1:	4.610	L1:	5.038	L1:	4.590	1.04		
R: 100% L / C: 110%	L2:		L2:		L2:			110	2000
L/ C. 110/0	L3:		L3:		L3:				
	L1:	4.380	L1:	4.809	L1:	4.590	1.07		
R: 95% L / C: 105%	L2:		L2:		L2:			94	2000
L/ C. 10370	L3:		L3:		L3:				
	L1:	4.380	L1:	4.580	L1:	4.590	1.05		
R: 95% L / C: 100%	L2:		L2:		L2:			114	2000
L/ U. 10070	L3:		L3:		L3:				
	L1:	4.380	L1:	4.351	L1:	4.590	1.02		
R: 95%	L2:		L2:		L2:			156	2000
L / C: 95%	L3:		L3:		L3:				
R: 100%	L1:	4.610	L1:	4.809	L1:	4.590	1.02	166	



L / C: 105%	L2:		L2:		L2:				2000
	L3:		L3:		L3:				
	L1:	4.610	L1:	4.580	L1:	4.590	0.99		
R: 100% L / C: 100%	L2:		L2:		L2:			128	2000
L/ 0. 100/0	L3:		L3:		L3:				
	L1:	4.610	L1:	4.351	L1:	4.590	0.97		
R: 100% L / C: 95%	L2:		L2:		L2:			130	2000
270.0070	L3:		L3:		L3:				
	L1:	4.841	L1:	4.809	L1:	4.590	0.97		
R: 105% L / C: 105%	L2:		L2:		L2:			102	2000
27 0. 10070	L3:		L3:		L3:				
	L1:	4.841	L1:	4.580	L1:	4.590	0.95		
R: 105% L / C: 100%	L2:		L2:		L2:			98	2000
2, 01 100/0	L3:		L3:		L3:				
L1:	L1:	4.841	L1:	4.351	L1:	4.590	0.92		
R: 105% L / C: 95%	L2:		L2:		L2:			61	2000
L/C.95%	L3:		L3:		L3:				
D (222)	L1:	4.610	L1:	4.122	L1:	4.590	0.94		
R: 100% L / C: 90%	L2:		L2:		L2:			108	2000
	L3:		L3:		L3:				
D 4050/	L1:	4.841	L1:	5.038	L1:	4.590	0.99		
R: 105% L / C: 110%	L2:		L2:		L2:			116	2000
_, _, _, _, _, _, _, _, _, _, _, _, _, _	L3:		L3:		L3:				
D. 4050/	L1:	4.841	L1:	4.122	L1:	4.590	0.90		
R: 105% L / C: 90%	L2:		L2:		L2:			107	2000
	L3:		L3:		L3:				
R: 110% L / C: 110%	L1:	5.071	L1:	5.038	L1:	4.590	0.95		
		L2:		L2:			49.2	2000	
	L3:		L3:		L3:				
D. 4400/	L1:	5.071	L1:	4.809	L1:	4.590	0.93		
R: 110% L / C: 105%	L2:		L2:		L2:			36.8	2000
_ / C: 105%	L3:		L3:		L3:				

Page 29 of 32

			-		-		1	1	
D 4400/	L1:	5.071	L1:	4.580	L1:	4.590	0.90		
R: 110% L / C: 100%	L2:		L2:		L2:			58	2000
_,,	L3:		L3:		L3:				
	L1:	5.071	L1:	4.351	L1:	4.590	0.88		
R: 110% L / C: 95%	L2:		L2:		L2:			60	2000
2, 0.00,0	L3:		L3:		L3:				
	L1:	5.071	L1:	4.122	L1:	4.590	0.86		
R: 110% L / C: 90%	L2:		L2:		L2:			55	2000
2, 0.00,0	L3:		L3:		L3:				
					Pov	wer 66%			
Conditions	ons P _W [w] Q _L [VA]		C	Qc[VA]	Q _f	Trip time [ms]	Limitation [ms]		
_	L1:	3.040	L1:	2.710	L1:	3.010	0.94		
R: 100% L / C: 95%	L2:		L2:		L2:			53	2000
2, 0.00%	L3:		L3:		L3:				
	L1:	3.040	L1:	2.756	L1:	3.010	0.95		
R: 100% L / C: 96%	L2:		L2:		L2:			165	2000
270.0070	L3:		L3:		L3:				
	L1:	3.040	L1:	2.802	L1:	3.010	0.96		
R: 100% L / C: 97%	L2:		L2:		L2:			155	2000
L/ 0. 3770	L3:		L3:		L3:				
_	L1:	3.040	L1:	2.848	L1:	3.010	0.96		
R: 100% L / C: 98%	L2:		L2:		L2:			59	2000
2, 0.00%	L3:		L3:		L3:			**	
	L1:	3.040	L1:	2.894	L1:	3.010	0.97		
R: 100% L / C: 99%	L2:		L2:		L2:			186	2000
2, 0.00,0	L3:		L3:		L3:				
_	L1:	3.040	L1:	2.940	L1:	3.010	0.98		
R: 100% L / C: 100%	L2:		L2:		L2:			98	2000
_,,	L3:		L3:		L3:				
	L1:	3.040	L1:	2.986	L1:	3.010	0.99		
R: 100% L / C: 101%	L2:		L2:		L2:			118	2000
	L3:		L3:		L3:				
	L1:	3.040	L1:	3.032	L1:	3.010	0.99		
R: 100% L / C: 102%	L2:		L2:		L2:			122	2000
_, 0. 10270	L3:		L3:		L3:				
R: 100%	L1:	3.040	L1:	3.078	L1:	3.010	1.00	450	
L / C: 103%	L2:		L2:		L2:			150	2000
							•		

Page 30 of 32

	L3:		L3:		L3:				
	L1:	3.040	L1:	3.124	L1:	3.010	1.01		
R: 100% L / C: 104%	L2:		L2:		L2:			143	2000
L/ C. 104/0	L3:		L3:		L3:				
	L1:	3.040	L1:	3.171	L1:	3.010	1.02		
R: 100% L / C: 105%	L2:		L2:		L2:			120	2000
L/ C. 10378	L3:		L3:		L3:				
					Po	wer 33%			·
Conditions		P _₩ [w]	0	Q∟[VA]	G	Qc[VA]	Qf	Trip time [ms]	Limitation [ms]
	L1:	1.510	L1:	1.260	L1:	1.520	0.92		
R: 100% L / C: 95%	L2:		L2:	2.020	L2:			123	2000
_,,	L3:		L3:	2.028	L3:				
D	L1:	1.510	L1:	1.306	L1:	1.520	0.93		
R: 100% L / C: 96%	L2:		L2:	2.020	L2:			126	2000
_/ _/ _/ _/	L3:		L3:	2.028	L3:				
	L1:	1.510	L1:	1.352	L1:	1.520	0.95		
R: 100% L / C: 97%	L2:		L2:	2.020	L2:			36	2000
_,,	L3:		L3:	2.028	L3:				
D 4000/	L1:	1.510	L1:	1.398	L1:	1.520	0.97		
R: 100% L / C: 98%	L2:		L2:	2.020	L2:			107	2000
_/ _/ _/	L3:		L3:	2.028	L3:				
D 4000/	L1:	1.510	L1:	1.444	L1:	1.520	0.98		
R: 100% L / C: 99%	L2:		L2:	2.020	L2:			214	2000
	L3:		L3:	2.028	L3:				
D 4000/	L1:	1.510	L1:	1.490	L1:	1.520	1.00		
R: 100% L / C: 100%	L2:		L2:	2.020	L2:			116	2000
	L3:		L3:	2.028	L3:				
D 4000/	L1:	1.510	L1:	1.536	L1:	1.520	1.01		
R: 100% L / C: 101%	L2:		L2:	2.020	L2:			122	2000
	L3:		L3:	2.028	L3:				
D 4000/	L1:	1.510	L1:	1.582	L1:	1.520	1.03		
R: 100% L / C: 102%	L2:		L2:	2.020	L2:			35	2000
	L3:		L3:	2.028	L3:				
D (000)	L1:	L1: 1.510 L1:	L1:	1.628	L1:	1.520	1.04		
R: 100% L / C: 103%	L2:		L2:	2.020	L2:			142	2000
	L3:		L3:	2.028	L3:				
R: 100%	L1:	1.510	L1:	1.674	L1:	1.520	1.06	214	

L / C: 104%	L2:		L2:	2.020	L2:				2000
	L3:		L3:	2.028	L3:				2000
	L1:	1.510	L0.	1.721	L1:	1.520	1.07		
R: 100%							1.07		
_ / C: 105%	L2:		L2:	2.020	L2:			121	2000
	L3:		L3:	2.028	L3:				
Remark:									
								rating in parallel	
								single phase cor	
		ith the re	mainin	ig phases	connec	cted causes	s a disconnecti	on of the genera	ating unit within
a maximum Note:	of 1s.								
	nologi	oc which i	hava a	cubetanti	ial chut	down timo	this can be ad	ded to the 0.5 se	oconde in
								could therefore	
seconds for				1 1655 11101	10.55.1				
RLC is adjus				o invortor	rated o		ar		
) PEUT: EUT			/6 01 11		Taleu U	uipui powe	51		
			in Fia		sitivo m	oone nowe	r from ELIT to u	utility. Nominal is	the 0 % test
condition val		low at ST	III FIG			eans powe		atinty. Norminal is	
		wor flow c	t S1 in	Eiguro 1	Positiv	o moone n	ower from EU	Γ to utility. Nomi	nal is the 0 %
est condition				i Figure i	. FUSIUV	re means p		i to utility. Norm	
⁾ BL: Balanc			Imbolo	nco cond	ition				
Condition A:			mbala		nion.				
EUT output p	ower F		lavimu	m^{5}					
EUT input vo					ltage r	ando			
							sing the maxim	um allowable in	nut nower
Actual outpu							sing the maxim		put power.
							anao is hotwoo	n X volts and Y	volte 90 % of
								age (i.e maxim	
								ide of its allowat	
voltage rang		Jilaye). II	rany c		_01 510		operated outs	ide of its allowar	ne input
Condition B:	с.								
EUT output p			∩ º/	66 % of ~	avimur	n			
EUT output p EUT input vo							L		
								n V volto and V	volta 00 % of
						· · ·	-	n X volts and Y	
								age (i.e., maxim	
		Jilage). In	i any c	ase. the c		buid not be	operated outs	ide of its allowat	ne input
oltage rang									
$\mathbf{n} = \mathbf{n} = \mathbf{l} \mathbf{i} \mathbf{i} \mathbf{i} = \mathbf{n} = \mathbf{n}$			F 0/	00 0/ 5) -4					
	W/ALF	イロリョン	о ‰ −	১১ % " ০া					
EUT output p			-1	a al luc i d	- 14				
EUT output ı EUT input vo	oltage 6	^{;)} = <10 %							
EUT output µ EUT input vo ⁵⁾ Or minimu	oltage 6 m allow	^{;)} = <10 % vable EU1	Γ outpι	ut level if g	greater	than 33 %.			
	oltage ⁶ m allow EUT rat	^{;)} = <10 % vable EU1 ted input (Γ outpι operat	ut level if g ing range	greater For ex	than 33 %. ample. If ra	ange is betwee	n X volts and Y	
EUT output p EUT input vo ⁵⁾ Or minimu ⁶⁾ Based on l range =X + (oltage ⁶ m allow EUT rai).9 × (Y	^{;)} = <10 % vable EUT ted input (′ – X). Y s	Γoutpι operat shall no	ut level if g ing range ot exceed	preater . For ex 0.8 × E	than 33 %. ample. If ra UT maxim	ange is betwee um system volt	age (i.e maxim	num allowable
EUT output p EUT input vo ⁵⁾ Or minimu ⁶⁾ Based on l range =X + (oltage ⁶ m allow EUT rat).9 × (Y ircuit vo	^{;)} = <10 % vable EUT ted input (′ – X). Y s	Γoutpι operat shall no	ut level if g ing range ot exceed	preater . For ex 0.8 × E	than 33 %. ample. If ra UT maxim	ange is betwee um system volt		num allowable

Page 32 of 32

Report No.: 50085060 001

4.2.4.2.2	2.4.2.2 TABLE: Response to utility recovery						
Conditions- Frequency	f 46.7 Hz	f 47.3 Hz	f 50.8 Hz	f 50.2 Hz			
Connection	🗌 Yes/ 🖾 No	🛛 Yes/ 🗌 No	🗌 Yes/ 🖾 No	🛛 Yes/ 🗌 No			
Time [s]	N/A	76s	N/A	78s			
Limits	Not connected	>60 s	Not connected	>60 s			
Power rate	N/A	9.86%	N/A	9.90%			
Limits	N/A	≤10%Pn/min	N/A	≤10%Pn/min			
Conditions- Voltage	V 84%Un	V 86%Un	V 111%Un	V 109%Un			
Connection	☐ Yes/ ⊠ No	🛛 Yes/ 🗌 No	🗌 Yes/ 🖾 No	🛛 Yes/ 🗌 No			
Time [s]	N/A	78s	N/A	78s			
Limits	Not connected	>60 s	Not connected	>60 s			
Power rate	N/A	9.88%	N/A	9.85%			
Limits	N/A	≤10%Pn/min	N/A	≤10%Pn/min			

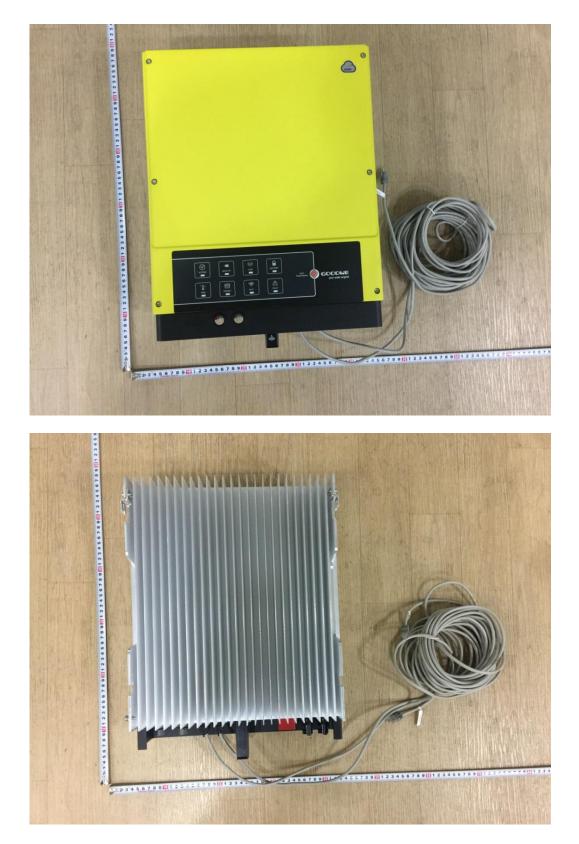
The end of report

PHOTO DOCUMENTATION

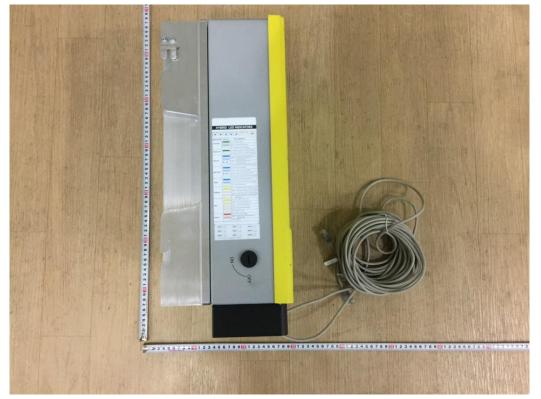
50085060 001

for

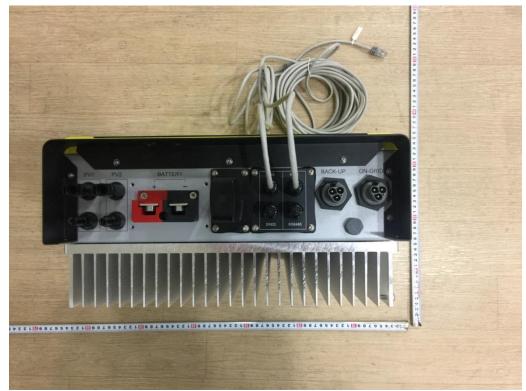
Hybrid inverter

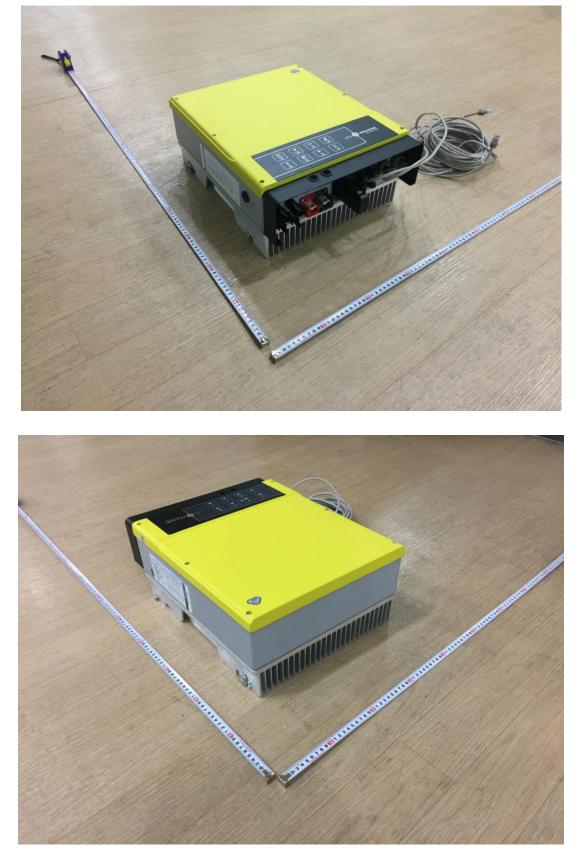

GW5048-EM, GW3648-EM, GW3048-EM JIANGSU GOODWE POWER SUPPLY TECHNOLOGY CO., LTD.

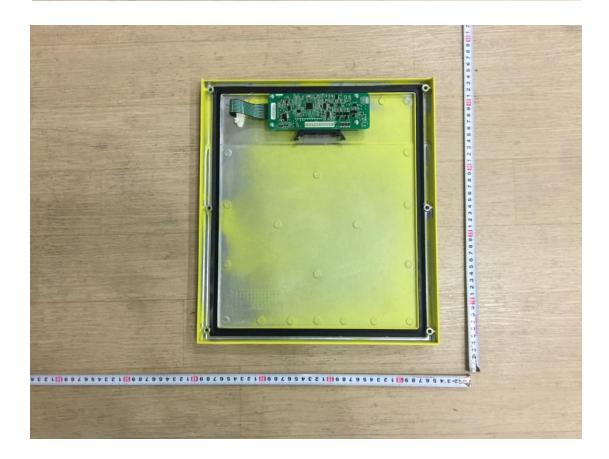
This documentation consists of 9 pages (excluding this cover page)



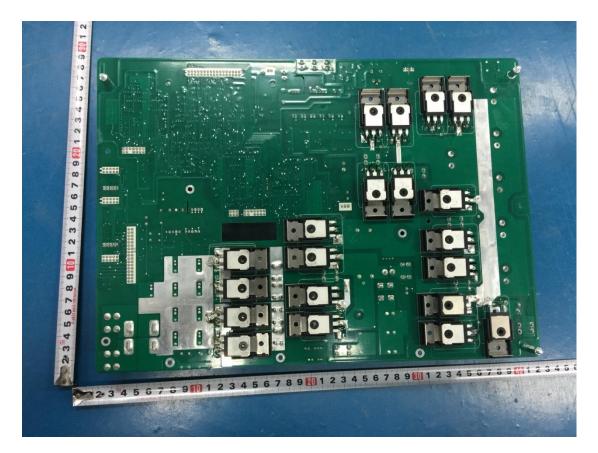
Report Number: 50085060 001

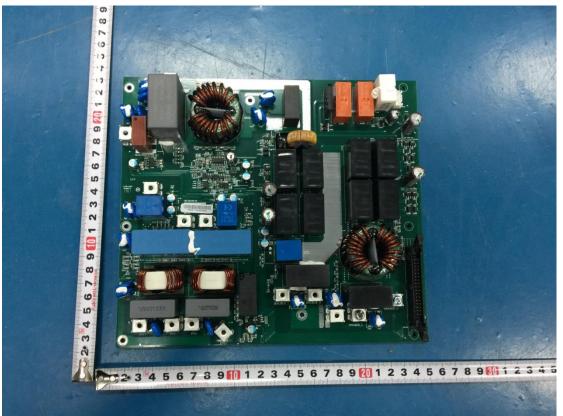

Report Number: 50085060 001

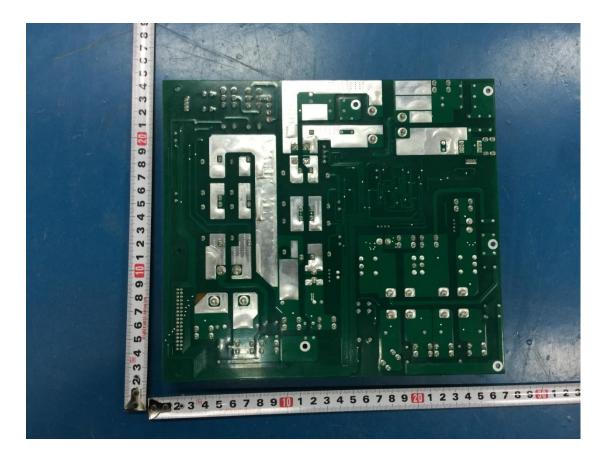

Report Number: 50085060 001



Report Number: 50085060 001











Page 7 of 9

