

Form C: Type Test Verification Report

Type Approval and **Manufacturer** declaration of compliance with the requirements of G98.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

If the **Micro-generator** is **FullyType Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to the **DNO**, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98.

Manufactu	Manufacturer's reference number			DQ190116				
Micro-gene	erator techno	logy	Solis-mini-2	Solis-mini-2500-4G				
Manufactu	Manufacturer name			Ningbo Ginlong Technologies Co., Ltd.				
Address			No. 57 Jintong Road, Seafront (Binhai) Industrial Park, Xiangshan, Ningbo, Zhejiang,					
			315712,P.F	R.China				
Tel	(+86) 574	6580 3377		Fax	(+86) 574 6578 1606			
E-mail	kun.zhang	@ginlong.com	I	Web site	www.ginlong.com			
	·	Connection (Option)ption				
Registered use separat	e sheet if	2.5	kW single phase, single, split or three phase system					
more than c connection	-		kW three phase					
			kW two phases in three phase system					
			kW two pha	kW two phases split phase system				
ManufacturerType Test declaration I certify that all products supplied by the company with the above Type Tested reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98.								
Signed	Thor	igkun	On behalf o Manufao	of cturer stamp	宁波锦浪新能源科技有限公司 NINGBO GINLONG TECHNOLOGIES CO., LTD.			
04.January.2019				The second reparted of the second sec				

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

Operating Range: This test should be carried out as specified in EN 50438 D.3.1.

Active Power shall be recorded every second. The tests will verify that the **Micro-generator** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Micro-generator the PV primary source may be replaced by a DC source.

In case of a full converter **Micro-generator**(eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG **Micro-generator** the mechanical drive system may be replaced by a test bench motor.

Test 1 Voltage = 85% of nominal (195.5 V) Frequency = 47.5 Hz Power factor = 1 Period of test 90 minutes	Tested with the specified conditions,in the 9 minutes period of time,the inverters operat normally	
Test 2 Voltage = 110% of nominal (253 V). Frequency = 51.5 Hz Power factor = 1 Period of test 90 minutes	Tested with the specified conditions,in the 9 minutes period of time,the inverters operat normally	
Test 3 Voltage = 110% of nominal (253 V). Frequency = 52.0 Hz Power factor = 1 Period of test 15 minutes	Tested with the specified conditions,in the 1 minutes period of time,the inverters operation normally	

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of Registered Capacity. The test requirements are specified in Annex A1A.1.3.1 (Inverter connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2

Micro-generator rating per phase (rpp)			2.5		kW	NV=MV*3.68/rpp		
Harmonic	Capacity		100% of Registered Capacity					
	Measured Value MV in Amps	ue MV in Value Value M		/ in	Normali sed Value (NV) in Amps	Limit in BS EN 61000-3-2 in Amps	Higher limit for odd harmonics 21 and above	
2	0.018	0.022	0.040		0.050	1.080		
3	0.081	0.099	0.184		0.226	2.300		

4	0.014	0.018	0.011	0.013	0.430	
5	0.063	0.078	0.128	0.157	1.140	
6	0.018	0.022	0.030	0.037	0.300	
7	0.045	0.056	0.073	0.090	0.770	
8	0.012	0.014	0.018	0.022	0.230	
9	0.043	0.052	0.071	0.087	0.400	
10	0.012	0.015	0.012	0.014	0.184	
11	0.026	0.032	0.044	0.054	0.330	
12	0.010	0.013	0.013	0.016	0.153	
13	0.029	0.035	0.039	0.048	0.210	
14	0.004	0.005	0.016	0.020	0.131	
15	0.021	0.026	0.032	0.039	0.150	
16	0.007	0.009	0.017	0.020	0.115	
17	0.007	0.009	0.031	0.038	0.132	
18	0.015	0.018	0.018	0.022	0.102	
19	0.023	0.029	0.019	0.023	0.118	
20	0.010	0.012	0.010	0.012	0.092	
21	0.005	0.006	0.006	0.007	0.107	0.160
22	0.006	0.007	0.027	0.033	0.084	
23	0.006	0.007	0.035	0.043	0.098	0.147
24	0.014	0.017	0.029	0.035	0.077	
25	0.017	0.021	0.009	0.011	0.090	0.135
26	0.006	0.007	0.009	0.011	0.071	
27	0.004	0.005	0.013	0.016	0.083	0.124
28	0.008	0.010	0.023	0.029	0.066	
29	0.012	0.014	0.023	0.028	0.078	0.117
30	0.011	0.014	0.015	0.018	0.061	
31	0.009	0.011	0.019	0.023	0.073	0.109
32	0.017	0.021	0.039	0.047	0.058	
33	0.017	0.021	0.016	0.020	0.068	0.102
34	0.004	0.004	0.022	0.027	0.054	
35	0.006	0.007	0.020	0.024	0.064	0.096
36	0.009	0.012	0.018	0.022	0.051	
37	0.011	0.014	0.007	0.008	0.061	0.091
38	0.008	0.009	0.019	0.024	0.048	
39	0.021	0.026	0.024	0.029	0.058	0.087
40	0.003	0.004	0.005	0.006	0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (**Inverter** connected) or Annex A2 A.2.3.3 (Synchronous).

	Starting			Stopping			Running		
	d max	dc	d(t)	d max d c d(t)		d(t)	P _{st}	P _{lt} 2 hours	
Measured Values at test	0.52	0.37	0	0.36	0	0	0.051	0.070	

N/A	N/A									
		N/A	`	N/A	N/A	N/A	1	٦	I/A	N/A
N/A	N/A	N/A		N/A	N/A	N/A		1	J∕A	N/A
4%	3.3%	3.3%	6	4%	3.3%	3.3%	6		1.0	0.65
R			Ω		Х				Ω	
R	0.24 * 0.4 ^		Ω		х				Ω	
R			Ω		Х				Ω	
	4% R R	4% 3.3% R 2.24 * 0.4 ^ R 2.24 *	4% 3.3% 3.3% R 0.24 * 0.4 ^ R 1	4% 3.3% 3.3% 4% 3.3% 3.3% R 0.24 * Ω R 0.24 * Ω R 0.4 ^ Ω	4% 3.3% 3.3% 4% 4% 3.3% 4% 4% 4% 4% R 0.24 * Ω R 0.24 * Ω R 0.24 * Ω	4% 3.3% 3.3% 4% 3.3% 4% 3.3% 3.3% 4% 3.3% R 0 X X R 0.24 * Ω X R 0.24 * Ω X R 0.24 * Ω X R Ω X X R Ω X X	4% 3.3% 3.3% 4% 3.3% 3.3% 4% 3.3% 3.3% 4% 3.3% 3.3% R 0.24 * Ω X 1 Q X 1 1 1	4% 3.3% 3.3% 4% 3.3% 3.3% 4% 3.3% 3.3% 4% 3.3% 3.3% R 0.24* Ω X 0.2 R 0.2 X 0.2 0.2 R Ω X 0.2 0.2 R Ω X 0.2 0.2 R Ω X 0.2 0.2 R Π Π Π 0.2 0.2 R Π Π Π Π 0.2 R Π Π Π 1 1 Π Π Π 1 1 1 Π Π Π <td< td=""><td>4% 3.3% 3.3% 4% 3.3% 3.3% 4% 3.3% 3.3% 4% 3.3% 3.3% R Ω X 0.15 * R 0.24 * Ω X 0.15 * R Ω X R Ω X Q X </td><td>4% 3.3% 3.3% 4% 3.3% 3.3% 1.0 4% 3.3% 3.3% 1.0 1.0 R 0.24^* Ω X 0.15^* Ω R 0.24^* Ω X 0.15^* Ω R 0.4^{-1} Ω X 0.15^* Ω R 0.4^{-1} Ω X 0.15^* Ω</td></td<>	4% 3.3% 3.3% 4% 3.3% 3.3% 4% 3.3% 3.3% 4% 3.3% 3.3% R Ω X 0.15 * R 0.24 * Ω X 0.15 * R Ω X R Ω X Q X	4% 3.3% 3.3% 4% 3.3% 3.3% 1.0 4% 3.3% 3.3% 1.0 1.0 R 0.24^* Ω X 0.15^* Ω R 0.24^* Ω X 0.15^* Ω R 0.4^{-1} Ω X 0.15^* Ω R 0.4^{-1} Ω X 0.15^* Ω

Applies to three phase and split single phase **Micro-generators**.

^ Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point. Single phase units reference source resistance is 0.4Ω

Two phase units in a three phase system reference source resistance is 0.4Ω .

Two phase units in a split phase system reference source resistance is 0.24 Ω .

Three phase units reference source resistance is 0.24 Ω .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

Test start date	1.December.2018	Test end date	7.December.2018					
Test location	Ningbo Ginlong electrical R&D LAB							

Power quality – DC injection: This test should be carried out in accordance with EN 50438 Annex D.3.10								
Test power level 20% 50% 75% 100%								
Recorded value in Amps	12.2mA	9.5mA	11.2mA	11.8mA				
as % of rated AC current	0.112%	0.087%	0.103%	0.108%				
Limit	0.25%	0.25%	0.25%	0.25%				

Power Quality – Power factor: This test shall be carried out in accordance with EN 50538 Annex D.3.4.1 but with nominal voltage -6% and +10%. Voltage to be maintained within \pm 1.5% of the stated level during the test.

	216.2 V	230 V	253 V
20% of Registered Capacity	0.954	0.956	0.953
50% of Registered Capacity	0.985	0.985	0.981
75% of Registered Capacity	0.993	0.995	0.993
100% of Registered Capacity	0.998	0.999	0.998
Limit	>0.95	>0.95	>0.95

Protection – Frequency tests: These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98 Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous)

Function	Set	ting	Trip	o test	"No trip tests"		
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip	
U/F stage 1	47.5 Hz	20 s	47.45Hz	20.032s	47.7 Hz 25.3s	Yes	
U/F stage 2	47 Hz	0.5 s	46.96Hz	0.541s	47.2 Hz 19.98 s	Yes	
					46.8 Hz 0.48 s	Yes	
O/F stage 1	52 Hz	0.5 s	52.04Hz	0.542s	51.8 Hz 89.98 s	Yes	
					52.2 Hz 0.48 s	Yes	

Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Function	Se	tting	Trip	test	"No tr	ip tests"
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	184 V	2.5 s	183.95 V	2.544s	186 V 3.50 s	Yes
					182 V 2.48 s	Yes
O/V stage 1	262.2 V	1.0 s	262.5 V	1.033 s	260.2 V 2.0 s	Yes
O/V stage 2	273.7 V	0.5 s	274.0 V	0.546 s	269.7 V 0.98 s	Yes
					277.7 V 0.48 s	Yes
deviation than the V and for the relev	minimum requ ant times as s	ired to operate t hown in the table	he protection.	The No trip tests re that the prote	need to be carried ction will not trip in	neasured at a large out at the setting ± error. 16. Other Inverter
should be tested in	accordance v	vith EN 50438 A	nnex D.2.5 at 1	0%, 55% and 10	0% of rated power.	
To be carried out a	at three output	power levels wit	h a tolerance of	plus or minus 5	% in Test Power le	vels.
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registere Capacity	105% of d Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 s	0.31s	0.33s	0.42s	0.34s	0.27s	0.36s
For Multi phase N fuse as well as o			nat the device	shuts down co	rrectly after the r	emoval of a single
Test Power	10%	55%	100%	10%	55%	100%
	95% of Registered	95% of Registered Capacity	95% of Registere Capacity	105% of Registered Capacity	d 105% of Registered Capacity	105% of Registered Capacity
Balancing load on islanded network	Capacity	Capacity				
on islanded	Capacity					
on islanded network Trip time. Ph1	Capacity 10%	55%	100%	10%	55%	100%

Trip time. Ph2 fuse removed									
Test Power	10%		55%	100%	, D	10%	6	55%	100%
Balancing load on islanded network	95% of Register Capacity				istered	105% of Registered Capacity	105% of Registered Capacity		
Trip time. Ph3 fuse removed									
Note for technologies which have a substantial shut down time this can be added to the 0.5 s in establishing that the trip occurred in less than 0.5 s. Maximum shut down time could therefore be up to 1.0 s for these technologies.									
Indicate additional	shut do	wn tim	e included in	above r	esults.				ms
For Inverters tested to BS EN 62116 the following sub set of tests should be recorded in the following									
table.		5 EIN		nowing	SUD Set	OILE	esis shou		a in the following
Test Power and	33%-5%	% Q	66%-5% Q	100%-5% P		33%	%+5% Q	66%+5% Q	100%+5% P
imbalance	Test 22		Test 12	Test	Test 5 Te		t 31	Test 21	Test 10
Trip time. Limit is 0.5 s	0.33	s	0.42s	0.	.22s 0.31s).31s	0.23s	0.32s
Protection – Fro accordance with E									
		Start	Frequency	Chang	e	(Confirm r	o trip	
Positive Vector Sh	nift	49.0	Hz	+50 de	grees	``	Yes		
Negative Vector S	hift	50.0	Hz	- 50 de	grees	``	Yes		
Protection – Free procedure in Anne									section 11.3, test
Ramp range		Test	frequency ra	mp:	Test D	uratio	on Coi	nfirm no trip	
49.0 Hz to 51.0 Hz	Z	+0.9	5 Hzs ⁻¹		2.1 s		Yes	Yes	
51.0 Hz to 49.0 Hz	Z	-0.95	5 Hzs ⁻¹		2.1 s		Yes	3	
Limited Frequent with EN 50438 Ar specific threshold	nnex D.3.	3 Pov	ver response	to over-	- freque				

Test sequence at Registered Capacity>80%	Measured Active PowerOutput	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	2500.61	50.01		100.00%
Step b) 50.45 Hz ±0.05 Hz	2475.51	50.46		99.00%
Step c) 50.70 Hz ±0.10 Hz	2350.49	50.71		94.00%
Step d) 51.15 Hz ±0.05 Hz	2125.44	51.16		85.00%
Step e) 50.70 Hz ±0.10 Hz	2350.49	50.71		94.00%
Step f) 50.45 Hz ±0.05 Hz	2475.51	50.46		99.00%
Step g) 50.00 Hz ±0.01 Hz	2500.84	50.01		100.00%
Test sequence at Registered Capacity40% - 60%	Measured Active PowerOutput	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	1250.76	50.01		50.00%
Step b) 50.45 Hz ±0.05 Hz	1238.02	50.46		49.50%
Step c) 50.70 Hz ±0.10 Hz	1175.50	50.71		47.00%
Step d) 51.15 Hz ±0.05 Hz	1062.95	51.16		42.50%
Step e) 50.70 Hz ±0.10 Hz	1175.50	50.71		47.00%
Step f) 50.45 Hz ±0.05 Hz	1238.02	50.46		49.50%
Step g) 50.00 Hz ±0.01 Hz	1250.93	50.01		50.00%

Steps as defined in EN 50438

Power output with falling frequency test: This test should be carried out in accordance with EN 50438 Annex D.3.2 active power feed-in at under-frequency.

Test sequence	Measured Active PowerOutput	Frequency	Primary power source
Test a) 50 Hz ± 0.01 Hz			
Test b) Point between 49.5 Hz and 49.6 Hz			
Test c) Point between 47.5 Hz and 47.6 Hz			

NOTE: The	NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes								
Re-connec	Re-connection timer.								
Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2.									
Time delay setting	Measured delay			Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 2.					
30s	32s		At 266.2	2 V	/ At 196.1 V A		At 4	7.4 Hz	At 52.1 Hz
		hat the Micro- not re-connect. Yes			Yes		Yes	Yes	
	Fault level contribution : These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (Inverter connected) and Annex A2 A.2.3.4 (Synchronous).								
For machines with electro-magnetic output For Inverter output									
Parameter			Symbol	Va	llue	Time a fault	after	Volts	Amps
Peak Short	Peak Short Circuit current		i _p			20 ms		3.43V	16.35Apeak
Initial Value of aperiodic current		A			100 ms		0	0	
Initial symmetrical short-circuit current*		cuit	I _k			250 ms		0	0
Decaying (a component current*	aperiodic) of short circuit		i _{DC}			500 ms		0	0
Reactance/ source*	Resistance Rat	io of	×/ _R			Time to trip		<20ms	In seconds
			• •						

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

Logic Interface.	Yes
Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected).	Yes/or NA
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	NA

Additional comments