

## Form C: Type Test Verification Report

Type Approval and **Manufacturer** declaration of compliance with the requirements of G98.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

If the **Micro-generator** is **FullyType Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to the **DNO**, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98.

| Manufactu                 | rer's reference               | ce number           | DQ190115                                                                                                    |                          |                                                                                                                              |  |  |
|---------------------------|-------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| Micro-gene                | erator techno                 | logy                | Solis-mini-                                                                                                 | 2000-4G                  |                                                                                                                              |  |  |
| Manufactu                 | rer name                      |                     | Ningbo Gir                                                                                                  | nlong Technologi         | ies Co., Ltd.                                                                                                                |  |  |
| Address                   | Address                       |                     | No. 57 Jintong Road, Seafront (Binhai) Industrial<br>Park, Xiangshan, Ningbo, Zhejiang,<br>315712,P.R.China |                          |                                                                                                                              |  |  |
|                           |                               |                     | 515712,1.1                                                                                                  |                          |                                                                                                                              |  |  |
| Tel                       | (+86) 574                     | 6580 3377           |                                                                                                             | Fax                      | (+86) 574 6578 1606                                                                                                          |  |  |
| E-mail                    | kun.zhang                     | @ginlong.com        |                                                                                                             | Web site                 | www.ginlong.com                                                                                                              |  |  |
|                           |                               | Connection (        | Option                                                                                                      |                          |                                                                                                                              |  |  |
| Registered<br>use separat | te sheet if                   | 2                   | kW single phase, single, split or three phase system                                                        |                          |                                                                                                                              |  |  |
| more than c connection    |                               |                     | kW three phase                                                                                              |                          |                                                                                                                              |  |  |
|                           |                               |                     | kW two phases in three phase system                                                                         |                          |                                                                                                                              |  |  |
|                           |                               |                     | kW two pha                                                                                                  | ases split phase         | system                                                                                                                       |  |  |
| Type Teste<br>this docume | ed reference<br>ent, prior to | number will be      | e manufactu<br>site and that                                                                                | ired and tested t        | upplied by the company with the above<br>to ensure that they perform as stated in<br>cations are required to ensure that the |  |  |
| Signed                    |                               | ıg Kun<br>uary.2019 | On behalf of<br>Manufacturer stamp                                                                          |                          |                                                                                                                              |  |  |
| Note that to house.       | esting can b                  | e done by the       | e Manufactu                                                                                                 | <b>urer</b> of an indivi | dual component or by an external test                                                                                        |  |  |

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

Operating Range: This test should be carried out as specified in EN 50438 D.3.1.



Active Power shall be recorded every second. The tests will verify that the **Micro-generator** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Micro-generator the PV primary source may be replaced by a DC source.

In case of a full converter **Micro-generator**(eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG **Micro-generator**the mechanical drive system may be replaced by a test bench motor.

| Test 1<br>Voltage = 85% of nominal (195.5 V)<br>Frequency = 47.5 Hz<br>Power factor = 1<br>Period of test 90 minutes | Tested with the specified conditions,in the 90<br>minutes period of time,the inverters operate<br>normally |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Test 2<br>Voltage = 110% of nominal (253 V).<br>Frequency = 51.5 Hz<br>Power factor = 1<br>Period of test 90 minutes | Tested with the specified conditions,in the 90<br>minutes period of time,the inverters operate<br>normally |
| Test 3<br>Voltage = 110% of nominal (253 V).<br>Frequency = 52.0 Hz<br>Power factor = 1<br>Period of test 15 minutes | Tested with the specified conditions,in the 15<br>minutes period of time,the inverters operate<br>normally |

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of Registered Capacity. The test requirements are specified in Annex A1A.1.3.1 (Inverter connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2

| Micro-ge | Micro-generator rating per phase<br>(rpp)  |                                            | ohase 2 kW                     |      |                                            | NV=MV*3.68/rpp                         |                                                   |  |
|----------|--------------------------------------------|--------------------------------------------|--------------------------------|------|--------------------------------------------|----------------------------------------|---------------------------------------------------|--|
| Harmonic | At 45-55% of <b>Registered</b><br>Capacity |                                            | 100% of Registered<br>Capacity |      |                                            |                                        |                                                   |  |
|          | Measured<br>Value MV in<br>Amps            | Norma<br>lised<br>Value<br>(NV) in<br>Amps | Measured<br>Value M\<br>Amps   | / in | Normali<br>sed<br>Value<br>(NV) in<br>Amps | Limit in BS EN<br>61000-3-2 in<br>Amps | Higher limit for odd<br>harmonics 21 and<br>above |  |
| 2        | 0.022                                      | 0.041                                      | 0.019                          |      | 0.036                                      | 1.080                                  |                                                   |  |
| 3        | 0.102                                      | 0.188                                      | 0.079                          |      | 0.145                                      | 2.300                                  |                                                   |  |



| 4 $0.021$ $0.039$ $0.012$ $0.022$ $0.430$ 5 $0.073$ $0.134$ $0.083$ $0.153$ $1.140$ 6 $0.011$ $0.020$ $0.024$ $0.043$ $0.300$ 7 $0.049$ $0.091$ $0.055$ $0.102$ $0.770$ 8 $0.007$ $0.016$ $0.029$ $0.230$ 9 $0.040$ $0.073$ $0.056$ $0.104$ $0.400$ 10 $0.008$ $0.015$ $0.027$ $0.153$ $0.184$ 11 $0.021$ $0.038$ $0.029$ $0.210$ $0.153$ 12 $0.010$ $0.018$ $0.017$ $0.153$ $0.161$ 14 $0.007$ $0.013$ $0.004$ $0.008$ $0.131$ 15 $0.012$ $0.022$ $0.016$ $0.162$ 17 $0.012$ $0.022$ $0.016$ $0.029$ $0.147$ 18 $0.007$ $0.014$ $0.009$ $0.017$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |       |       |       |       |       |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-------|-------|-------|-------|-------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4  | 0.021 | 0.039 | 0.012 | 0.022 | 0.430 |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |       |       |       |       |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |       |       |       |       |       |       |
| 9         0.040         0.073         0.056         0.104         0.400           10         0.008         0.015         0.018         0.033         0.184           11         0.021         0.038         0.029         0.054         0.330           12         0.010         0.018         0.015         0.027         0.153           13         0.027         0.050         0.038         0.069         0.210           14         0.007         0.013         0.004         0.008         0.131           15         0.012         0.022         0.024         0.045         0.150           16         0.006         0.10         0.009         0.115         1           17         0.012         0.022         0.016         0.029         0.132           18         0.007         0.013         0.018         0.034         0.102           20         0.011         0.019         0.107         0.160           21         0.005         0.009         0.017         0.084           22         0.008         0.014         0.009         0.017         0.147           23         0.007         0.012         0.009 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> |    |       |       |       |       |       |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |       |       |       |       |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |       |       |       |       |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |       | 0.015 |       | 0.033 |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 0.021 | 0.038 |       | 0.054 |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 0.010 | 0.018 | 0.015 | 0.027 | 0.153 |       |
| 15 $0.012$ $0.022$ $0.024$ $0.045$ $0.150$ 16 $0.006$ $0.010$ $0.009$ $0.017$ $0.115$ 17 $0.012$ $0.022$ $0.016$ $0.029$ $0.132$ 18 $0.007$ $0.013$ $0.018$ $0.034$ $0.102$ 19 $0.021$ $0.038$ $0.029$ $0.052$ $0.118$ 20 $0.011$ $0.019$ $0.011$ $0.020$ $0.092$ 21 $0.005$ $0.009$ $0.010$ $0.019$ $0.107$ $0.160$ 22 $0.008$ $0.014$ $0.009$ $0.017$ $0.084$ 23 $0.009$ $0.016$ $0.017$ $0.031$ $0.098$ $0.147$ 24 $0.007$ $0.013$ $0.022$ $0.041$ $0.077$ 25 $0.014$ $0.026$ $0.016$ $0.029$ $0.090$ $0.135$ 26 $0.007$ $0.012$ $0.008$ $0.014$ $0.083$ $0.124$ 28 $0.003$ $0.005$ $0.011$ $0.021$ $0.066$ $0.013$ 29 $0.011$ $0.023$ $0.016$ $0.029$ $0.011$ 30 $0.013$ $0.023$ $0.016$ $0.029$ $0.061$ 31 $0.009$ $0.017$ $0.018$ $0.073$ $0.109$ 32 $0.008$ $0.015$ $0.024$ $0.044$ $0.058$ 33 $0.011$ $0.021$ $0.015$ $0.027$ $0.068$ $0.102$ 34 $0.007$ $0.013$ $0.005$ $0.010$ $0.054$ $0.096$ 35 $0.008$                                                                                                                                                                                                                                                                                          | 13 | 0.027 | 0.050 | 0.038 | 0.069 | 0.210 |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14 | 0.007 | 0.013 | 0.004 | 0.008 | 0.131 |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 | 0.012 | 0.022 | 0.024 | 0.045 | 0.150 |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 0.006 | 0.010 | 0.009 | 0.017 | 0.115 |       |
| 19         0.021         0.038         0.029         0.052         0.118           20         0.011         0.019         0.011         0.020         0.092           21         0.005         0.009         0.010         0.019         0.107         0.160           22         0.008         0.014         0.009         0.017         0.084            23         0.009         0.016         0.017         0.031         0.098         0.147           24         0.007         0.013         0.022         0.041         0.077            25         0.014         0.026         0.016         0.029         0.090         0.135           26         0.007         0.012         0.009         0.017         0.071           27         0.007         0.012         0.008         0.014         0.083         0.124           28         0.003         0.005         0.011         0.021         0.066            29         0.011         0.023         0.016         0.029         0.061            31         0.009         0.017         0.010         0.018         0.073         0.109                                                                                                          | 17 | 0.012 | 0.022 | 0.016 | 0.029 | 0.132 |       |
| 20         0.011         0.019         0.011         0.020         0.092           21         0.005         0.009         0.010         0.019         0.107         0.160           22         0.008         0.014         0.009         0.017         0.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 | 0.007 | 0.013 | 0.018 | 0.034 | 0.102 |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 | 0.021 | 0.038 | 0.029 | 0.052 | 0.118 |       |
| 22         0.008         0.014         0.009         0.017         0.084           23         0.009         0.016         0.017         0.031         0.098         0.147           24         0.007         0.013         0.022         0.041         0.077            25         0.014         0.026         0.016         0.029         0.090         0.135           26         0.007         0.012         0.009         0.017         0.071            27         0.007         0.012         0.008         0.014         0.083         0.124           28         0.003         0.005         0.011         0.021         0.066            29         0.011         0.023         0.016         0.029         0.061            31         0.009         0.017         0.010         0.018         0.073         0.109           32         0.008         0.015         0.024         0.044         0.058            33         0.011         0.021         0.015         0.027         0.068         0.102           34         0.007         0.013         0.024         0.051                                                                                                                       | 20 | 0.011 | 0.019 | 0.011 | 0.020 | 0.092 |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21 | 0.005 | 0.009 | 0.010 | 0.019 | 0.107 | 0.160 |
| 240.0070.0130.0220.0410.077250.0140.0260.0160.0290.0900.135260.0070.0120.0090.0170.071270.0070.0120.0080.0140.0830.124280.0030.0050.0110.0210.066290.0110.0200.0220.0400.0780.117300.0130.0230.0160.0290.061310.0090.0170.0100.0180.0730.109320.0080.0150.0240.0440.058330.0110.0210.0150.0270.0680.102340.0070.0130.0050.0100.054350.0080.0140.0070.0130.0640.096360.0080.0150.0170.0320.061370.0160.0300.0170.0320.0610.091380.0050.0090.0160.048390.0220.0400.0250.0460.0580.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 | 0.008 | 0.014 | 0.009 | 0.017 | 0.084 |       |
| 250.0140.0260.0160.0290.0900.135260.0070.0120.0090.0170.0710.071270.0070.0120.0080.0140.0830.124280.0030.0050.0110.0210.0660.078290.0110.0200.0220.0400.0780.117300.0130.0230.0160.0290.0610.109310.0090.0170.0100.0180.0730.109320.0080.0150.0240.0440.0580.102340.0070.0130.0050.0100.0540.096350.0080.0150.0130.0240.0610.096360.0080.0150.0130.0240.0510.091370.0160.0300.0170.0320.0610.091380.0050.0090.0090.0160.0480.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 | 0.009 | 0.016 | 0.017 | 0.031 | 0.098 | 0.147 |
| 260.0070.0120.0090.0170.071270.0070.0120.0080.0140.0830.124280.0030.0050.0110.0210.066290.0110.0200.0220.0400.0780.117300.0130.0230.0160.0290.061310.0090.0170.0100.0180.0730.109320.0080.0150.0240.0440.058330.0110.0210.0150.0270.0680.102340.0070.0130.0050.0100.05436360.0080.0150.0130.0240.0610.096370.0160.0300.0170.0320.0610.091380.0050.0090.0090.0160.04839390.0220.0400.0250.0460.0580.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24 | 0.007 | 0.013 | 0.022 | 0.041 | 0.077 |       |
| 270.0070.0120.0080.0140.0830.124280.0030.0050.0110.0210.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 | 0.014 | 0.026 | 0.016 | 0.029 | 0.090 | 0.135 |
| 28         0.003         0.005         0.011         0.021         0.066           29         0.011         0.020         0.022         0.040         0.078         0.117           30         0.013         0.023         0.016         0.029         0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26 | 0.007 | 0.012 | 0.009 | 0.017 | 0.071 |       |
| 290.0110.0200.0220.0400.0780.117300.0130.0230.0160.0290.061310.0090.0170.0100.0180.0730.109320.0080.0150.0240.0440.058330.0110.0210.0150.0270.0680.102340.0070.0130.0050.0100.054350.0080.0140.0070.0130.0640.096360.0080.0150.0170.0320.0610.091380.0050.0090.0090.0160.048390.0220.0400.0250.0460.0580.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 | 0.007 | 0.012 | 0.008 | 0.014 | 0.083 | 0.124 |
| 30         0.013         0.023         0.016         0.029         0.061           31         0.009         0.017         0.010         0.018         0.073         0.109           32         0.008         0.015         0.024         0.044         0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 | 0.003 | 0.005 | 0.011 | 0.021 | 0.066 |       |
| 31         0.009         0.017         0.010         0.018         0.073         0.109           32         0.008         0.015         0.024         0.044         0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29 | 0.011 | 0.020 | 0.022 | 0.040 | 0.078 | 0.117 |
| 32         0.008         0.015         0.024         0.044         0.058           33         0.011         0.021         0.015         0.027         0.068         0.102           34         0.007         0.013         0.005         0.010         0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30 | 0.013 | 0.023 | 0.016 | 0.029 | 0.061 |       |
| 33         0.011         0.021         0.015         0.027         0.068         0.102           34         0.007         0.013         0.005         0.010         0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31 | 0.009 | 0.017 | 0.010 | 0.018 | 0.073 | 0.109 |
| 34         0.007         0.013         0.005         0.010         0.054           35         0.008         0.014         0.007         0.013         0.064         0.096           36         0.008         0.015         0.013         0.024         0.051         0.091           37         0.016         0.030         0.017         0.032         0.061         0.091           38         0.005         0.009         0.009         0.016         0.048         0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32 | 0.008 | 0.015 | 0.024 | 0.044 | 0.058 |       |
| 35         0.008         0.014         0.007         0.013         0.064         0.096           36         0.008         0.015         0.013         0.024         0.051         0.091           37         0.016         0.030         0.017         0.032         0.061         0.091           38         0.005         0.009         0.009         0.016         0.048         0.087           39         0.022         0.040         0.025         0.046         0.058         0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33 | 0.011 | 0.021 | 0.015 | 0.027 | 0.068 | 0.102 |
| 36         0.008         0.015         0.013         0.024         0.051           37         0.016         0.030         0.017         0.032         0.061         0.091           38         0.005         0.009         0.009         0.016         0.048            39         0.022         0.040         0.025         0.046         0.058         0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34 | 0.007 | 0.013 | 0.005 | 0.010 | 0.054 |       |
| 37         0.016         0.030         0.017         0.032         0.061         0.091           38         0.005         0.009         0.009         0.016         0.048            39         0.022         0.040         0.025         0.046         0.058         0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35 | 0.008 | 0.014 | 0.007 | 0.013 | 0.064 | 0.096 |
| 38         0.005         0.009         0.009         0.016         0.048           39         0.022         0.040         0.025         0.046         0.058         0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36 | 0.008 | 0.015 | 0.013 | 0.024 | 0.051 |       |
| 39         0.022         0.040         0.025         0.046         0.058         0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37 | 0.016 | 0.030 | 0.017 | 0.032 | 0.061 | 0.091 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38 | 0.005 | 0.009 | 0.009 | 0.016 | 0.048 |       |
| 40 0.004 0.007 0.002 0.004 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39 | 0.022 | 0.040 | 0.025 | 0.046 | 0.058 | 0.087 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 | 0.004 | 0.007 | 0.002 | 0.004 | 0.046 |       |

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

**Power Quality – Voltage fluctuations and Flicker**: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (**Inverter** connected) or Annex A2 A.2.3.3 (Synchronous).

|                               | Starting |      |      | Stopping | g  |      | Running         |                         |
|-------------------------------|----------|------|------|----------|----|------|-----------------|-------------------------|
|                               | d max    | dc   | d(t) | d max    | dc | d(t) | P <sub>st</sub> | P <sub>lt</sub> 2 hours |
| Measured<br>Values at<br>test | 0.52     | 0.36 | 0    | 0.36     | 0  | 0    | 0.051           | 0.070                   |



| impedance                                         |     |                 |      |          |     |      |      |   |              |     |      |
|---------------------------------------------------|-----|-----------------|------|----------|-----|------|------|---|--------------|-----|------|
| Normalised<br>to standard<br>impedance            | N/A | N/A             | N/A  | <b>\</b> | N/A | N/A  | N/A  | ١ | ٦            | N/A | N/A  |
| Normalised<br>to required<br>maximum<br>impedance | N/A | N/A             | N/A  | <b>\</b> | N/A | N/A  | N/A  | λ | 1            | N/A | N/A  |
| Limits set<br>under BS<br>EN 61000-<br>3-11       | 4%  | 3.3%            | 3.3% | 6        | 4%  | 3.3% | 3.3% | 6 |              | 1.0 | 0.65 |
|                                                   |     |                 |      |          |     |      |      |   |              |     |      |
| Test<br>Impedance                                 | R   |                 |      | Ω        |     | х    |      |   |              | Ω   |      |
| Standard<br>Impedance                             | R   | 0.24 *<br>0.4 ^ |      | Ω        |     | х    |      |   | 15 *<br>25 ^ | Ω   |      |
| Maximum<br>Impedance                              | R   |                 |      | Ω        |     | х    |      |   |              | Ω   |      |

Applies to three phase and split single phase **Micro-generators**.

^ Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value\*reference source resistance/measured source resistance at test point. Single phase units reference source resistance is  $0.4 \Omega$ 

Two phase units in a three phase system reference source resistance is  $0.4 \Omega$ .

Two phase units in a split phase system reference source resistance is 0.24  $\Omega$ .

Three phase units reference source resistance is 0.24  $\Omega$ .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

| Test start date | 1.December.2018        | Test end date | 7.December.2018 |
|-----------------|------------------------|---------------|-----------------|
|                 |                        |               |                 |
| Test location   | Ningbo Ginlong electri | cal R&D LAB   |                 |
|                 |                        |               |                 |



| Power qualit          | ty – DC inje | ction: This | s test s | hould be carrie | ed o              | out in acc | ordan    | ce with El       | V 5043 | 88 Annex D.3.10                       |  |
|-----------------------|--------------|-------------|----------|-----------------|-------------------|------------|----------|------------------|--------|---------------------------------------|--|
| Test power le         | evel         | 20%         |          | 50%             |                   | 7          | ′5%      |                  | 10     | 0%                                    |  |
| Recorded val<br>Amps  | lue in       | 12.2mA      |          | 9.5mA           |                   | 1          | 10.6mA   |                  | 11     | 11.2mA                                |  |
| as % of rated current | AC           | 0.209%      |          | 0.186%          | 0.186% 0          |            | 0.160%   |                  | 0.1    | 0.146%                                |  |
| Limit                 |              | 0.25%       |          | 0.25%           | 0.25% 0.25% 0.25% |            |          |                  |        |                                       |  |
|                       |              |             |          |                 |                   |            |          |                  |        | 38 Annex D.3.4.1<br>ated level during |  |
|                       |              |             |          | 216.2 V         |                   |            | 230 V    | ,                |        | 253 V                                 |  |
| 20% of <b>Regi</b> s  | stered Capa  | city        |          | 0.954           |                   |            | 0.956    | į                |        | 0.951                                 |  |
| 50% of <b>Regi</b> s  | stered Capa  | city        |          | 0.984           |                   |            | 0.985    |                  |        | 0.983                                 |  |
| 75% of <b>Regi</b> s  | stered Capa  | city        |          | 0.991           |                   |            | 0.995    |                  |        | 0.992                                 |  |
| 100% of <b>Reg</b>    | istered Cap  | acity       |          | 0.998           |                   | 0.999      |          |                  |        | 0.998                                 |  |
| Limit                 |              |             |          | >0.95           |                   | >0.95      |          |                  | >0.95  |                                       |  |
|                       | he notes in  |             |          |                 |                   |            |          |                  |        | EN 50438 Annex<br>anex A2 A.2.2.3     |  |
| Function              | S            | etting      |          | Trip            | tes               | st         | "No trip |                  |        | tests"                                |  |
|                       | Frequency    | Time c      | lelay    | Frequency       | Т                 | ime delay  | y F      | requency         | /time  | Confirm no<br>trip                    |  |
| U/F stage 1           | 47.5 Hz      | 20          | s        | 47.46Hz         |                   | 20.035s    |          | 47.7 H<br>25.1s  |        | Yes                                   |  |
| U/F stage 2           | 47 Hz        | 0.5         | S        | 46.96Hz         |                   | 0.542s     |          | 47.2 H<br>19.98  |        | Yes                                   |  |
|                       |              |             |          |                 |                   |            |          | 46.8 H<br>0.48 s |        | Yes                                   |  |
| O/F stage<br>1        | 52 Hz        | 0.5         | s        | 52.04Hz         |                   | 0.531s     |          | 51.8 H<br>89.98  |        | Yes                                   |  |
|                       |              |             |          |                 |                   |            |          | 52.2 H<br>0.48 s |        | Yes                                   |  |

Note. For frequency trip tests the frequency required to trip is the setting  $\pm 0.1$  Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting  $\pm 0.2$  Hz and for the relevant times as shown in the table above to ensure that the protection will not



trip in error.

## **Protection – Voltage tests:** These tests should be carried out in accordance with EN 50438 Annex D.2.3 and the notes in EREC G98 Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous)

| Function    | Set     | tting      | Trip    | test       | "No trip tests"   |                 |  |
|-------------|---------|------------|---------|------------|-------------------|-----------------|--|
|             | Voltage | Time delay | Voltage | Time delay | Voltage /time     | Confirm no trip |  |
| U/V         | 184 V   | 2.5 s      | 183.5 V | 2.543s     | 186 V<br>3.50 s   | Yes             |  |
|             |         |            |         |            | 182 V<br>2.48 s   | Yes             |  |
| O/V stage 1 | 262.2 V | 1.0 s      | 262.5 V | 1.046 s    | 260.2 V<br>2.0 s  | Yes             |  |
| O/V stage 2 | 273.7 V | 0.5 s      | 274.0 V | 0.544 s    | 269.7 V<br>0.98 s | Yes             |  |
|             |         |            |         |            | 277.7 V<br>0.48 s | Yes             |  |

Note for Voltage tests the Voltage required to trip is the setting  $\pm 3.45$  V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting  $\pm 4$  V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Loss of Mains test: For PV Inverters shall be tested in accordance with BS EN 62116. Other Inverters should be tested in accordance with EN 50438 Annex D.2.5 at 10%, 55% and 100% of rated power.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels.

| Test Power                               | 10%                              | 55%                              | 100%                             | 10%                               | 55%                               | 100%                              |
|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Balancing load<br>on islanded<br>network | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity |
| Trip time. Limit is 0.5 s                | 0.31s                            | 0.34s                            | 0.43s                            | 0.33s                             | 0.29s                             | 0.36s                             |

For Multi phase **Micro-generators** confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases.

| Test Power                               | 10%                              | 55%                              | 100%                             | 10%                                      | 55%                               | 100%                              |
|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------------------|-----------------------------------|
| Balancing load<br>on islanded<br>network | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 105% of<br><b>Registered</b><br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity |
| Trip time. Ph1<br>fuse removed           |                                  |                                  |                                  |                                          |                                   |                                   |
| Test Power                               | 10%                              | 55%                              | 100%                             | 10%                                      | 55%                               | 100%                              |



| on islanded<br>network                                                                                                                                                                                           | 95% of<br>Registe<br>Capacit                                                                |                                                                                | 95% of<br>Registered<br>Capacity                                                                                          | 95% o<br>Regis<br>Capa                                                                 | stered                                                                                               | 105%<br>Regi<br>Capa                                                 | stered                                                                                         | 105% of<br>Registered<br>Capacity                                                                          | 105% of<br>Registered<br>Capacity                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Trip time. Ph2 fuse removed                                                                                                                                                                                      |                                                                                             |                                                                                |                                                                                                                           |                                                                                        |                                                                                                      |                                                                      |                                                                                                |                                                                                                            |                                                                     |
| Test Power                                                                                                                                                                                                       | 10%                                                                                         |                                                                                | 55%                                                                                                                       | 100%                                                                                   | ,<br>D                                                                                               | 10%                                                                  |                                                                                                | 55%                                                                                                        | 100%                                                                |
| Balancing load<br>on islanded<br>network                                                                                                                                                                         | 95% of<br>Registe<br>Capacit                                                                |                                                                                | 95% of<br>Registered<br>Capacity                                                                                          | 95% o<br>Regis<br>Capa                                                                 | stered                                                                                               | 105%<br>Regi<br>Capa                                                 | stered                                                                                         | 105% of<br>Registered<br>Capacity                                                                          | 105% of<br>Registered<br>Capacity                                   |
| Trip time. Ph3 fuse removed                                                                                                                                                                                      |                                                                                             |                                                                                |                                                                                                                           |                                                                                        |                                                                                                      |                                                                      |                                                                                                |                                                                                                            |                                                                     |
| Note for technolo<br>establishing that t<br>s for these technological                                                                                                                                            | he trip oc                                                                                  |                                                                                |                                                                                                                           |                                                                                        |                                                                                                      |                                                                      |                                                                                                |                                                                                                            |                                                                     |
| Indicate additiona                                                                                                                                                                                               | I shut dov                                                                                  | wn tim                                                                         | e included in                                                                                                             | above r                                                                                | esults.                                                                                              |                                                                      |                                                                                                |                                                                                                            | ms                                                                  |
|                                                                                                                                                                                                                  |                                                                                             |                                                                                |                                                                                                                           |                                                                                        |                                                                                                      |                                                                      |                                                                                                |                                                                                                            |                                                                     |
| For <b>Inverters</b> tes table.                                                                                                                                                                                  | ted to B                                                                                    | S EN                                                                           | 62116 the fo                                                                                                              | llowing                                                                                | sub set                                                                                              | of te                                                                | sts shou                                                                                       | Id be recorde                                                                                              | d in the following                                                  |
|                                                                                                                                                                                                                  | ted to B<br>33%-5%<br>Test 22                                                               | % Q                                                                            | 62116 the fo<br>66%-5% Q<br>Test 12                                                                                       | -                                                                                      | 6-5% P                                                                                               |                                                                      | +5% Q                                                                                          | ld be recorde<br>66%+5% Q<br>Test 21                                                                       | d in the following<br>100%+5% P<br>Test 10                          |
| table.<br>Test Power and                                                                                                                                                                                         | 33%-5%                                                                                      | % Q                                                                            | 66%-5% Q                                                                                                                  | 100%<br>Test                                                                           | 6-5% P                                                                                               | 33%<br>Test                                                          | +5% Q                                                                                          | 66%+5% Q                                                                                                   | 100%+5% P                                                           |
| table.<br>Test Power and<br>imbalance<br>Trip time. Limit<br>is 0.5 s                                                                                                                                            | 33%-5%<br>Test 22<br>0.35<br><b>equency</b>                                                 | % Q<br>Sis                                                                     | 66%-5% Q<br>Test 12<br>0.42s<br>nge, Vector                                                                               | 100%<br>Test :<br>0.:<br>Shift                                                         | 6-5% P<br>5<br>27s<br><b>Stability</b>                                                               | 33%<br>Test<br>0<br><b>/ tes</b>                                     | +5% Q<br>31<br>.33s<br><b>t:</b> This                                                          | 66%+5% Q<br>Test 21<br>0.23s<br>test should b                                                              | 100%+5% P<br>Test 10<br>0.32s<br>e carried out in                   |
| table.<br>Test Power and<br>imbalance<br>Trip time. Limit<br>is 0.5 s<br>Protection – Fr                                                                                                                         | 33%-5%<br>Test 22<br>0.35<br><b>equency</b>                                                 | % Q<br>5s<br>7 <b>char</b><br>18 Ann                                           | 66%-5% Q<br>Test 12<br>0.42s<br>nge, Vector                                                                               | 100%<br>Test :<br>0.:<br>Shift                                                         | 6-5% P<br>5<br>27s<br><b>Stability</b><br>ter conn                                                   | 33%<br>Test<br>0<br><b>/ tes</b><br>ected                            | +5% Q<br>31<br>.33s<br><b>t:</b> This                                                          | 66%+5% Q<br>Test 21<br>0.23s<br>test should b<br>ex A2 A.2.2.6 (                                           | 100%+5% P<br>Test 10<br>0.32s<br>e carried out in                   |
| table.<br>Test Power and<br>imbalance<br>Trip time. Limit<br>is 0.5 s<br>Protection – Fr                                                                                                                         | 33%-5%<br>Test 22<br>0.35<br><b>equency</b><br>EREC G9                                      | % Q<br>5s<br>7 <b>char</b><br>18 Ann                                           | 66%-5% Q<br>Test 12<br>0.42s<br><b>nge, Vector</b><br>ex A1 A.1.2.6<br>Frequency                                          | 100%<br>Test<br>0.:<br>Shift<br>6 (Invert                                              | 6-5% P<br>5<br>27s<br><b>Stability</b><br>t <b>er</b> conn                                           | 33%<br>Test<br>0<br>y tes<br>ected                                   | +5% Q<br>31<br>.33s<br><b>t:</b> This<br>) or Anne                                             | 66%+5% Q<br>Test 21<br>0.23s<br>test should b<br>ex A2 A.2.2.6 (                                           | 100%+5% P<br>Test 10<br>0.32s<br>e carried out in                   |
| table.<br>Test Power and<br>imbalance<br>Trip time. Limit<br>is 0.5 s<br><b>Protection – Fr</b><br>accordance with E                                                                                             | 33%-5%<br>Test 22<br>0.35<br>equency<br>EREC G9                                             | % Q<br>5s<br>7 <b>char</b><br>8 Ann<br>Start                                   | 66%-5% Q<br>Test 12<br>0.42s<br>nge, Vector<br>ex A1 A.1.2.6<br>Frequency<br>Hz                                           | 100%<br>Test<br>0<br>Shift<br>6 (Invert<br>Chang                                       | 6-5% P<br>5<br>27s<br><b>Stability</b><br>ter conn<br>e                                              | 33%<br>Test<br>0<br>/ tes<br>ected<br>C                              | +5% Q<br>31<br>.33s<br>t: This<br>) or Anne<br>Confirm r                                       | 66%+5% Q<br>Test 21<br>0.23s<br>test should b<br>ex A2 A.2.2.6 (                                           | 100%+5% P<br>Test 10<br>0.32s<br>e carried out in                   |
| table.<br>Test Power and<br>imbalance<br>Trip time. Limit<br>is 0.5 s<br><b>Protection – Fr</b><br>accordance with B<br>Positive Vector SI                                                                       | 33%-5%<br>Test 22<br>0.35<br>equency<br>EREC G9<br>hift<br>Shift<br>quency of               | 6 Q<br>5s<br>7 <b>char</b><br>8 Ann<br>8 Start<br>49.0<br>50.0<br><b>chang</b> | 66%-5% Q<br>Test 12<br>0.42s<br>nge, Vector<br>ex A1 A.1.2.6<br>Frequency<br>Hz<br>Hz<br>Hz                               | 100%<br>Test =<br>0.:<br>Shift<br>6 (Invert<br>Chang<br>+50 de<br>- 50 de<br>ability 1 | 6-5% P<br>5<br>27s<br>Stability<br>ter conn<br>e<br>egrees<br>egrees<br>egrees<br>test: The          | 33%<br>Test<br>0<br>y tes<br>ected<br>C<br>Y<br>Y<br>e requ          | +5% Q<br>31<br>.33s<br>t: This<br>) or Anno<br>Confirm r<br>és<br>és                           | 66%+5% Q<br>Test 21<br>0.23s<br>test should b<br>ex A2 A.2.2.6 (<br>o trip                                 | 100%+5% P<br>Test 10<br>0.32s<br>e carried out in<br>Synchronous).  |
| table.<br>Test Power and<br>imbalance<br>Trip time. Limit<br>is 0.5 s<br><b>Protection – Fr</b><br>accordance with B<br>Positive Vector SI<br>Negative Vector S<br><b>Protection – Fre</b>                       | 33%-5%<br>Test 22<br>0.35<br>equency<br>EREC G9<br>hift<br>Shift<br>quency of               | % Q<br>5s<br>7 char<br>8 Ann<br>8 Start<br>49.0<br>50.0<br>50.0                | 66%-5% Q<br>Test 12<br>0.42s<br>nge, Vector<br>ex A1 A.1.2.6<br>Frequency<br>Hz<br>Hz<br>Hz                               | 100%<br>Test =<br>0.:<br>Shift<br>6 (Invert<br>Chang<br>+50 de<br>- 50 de<br>ability f | 6-5% P<br>5<br>27s<br>Stability<br>ter conn<br>e<br>egrees<br>egrees<br>egrees<br>test: The          | 33%<br>Test<br>0<br>/ tes<br>ected<br>C<br>Y<br>Y<br>e requ<br>A.2.2 | +5% Q<br>31<br>.33s<br>t: This<br>) or Anno<br>Confirm r<br>'es<br>'es<br>uirement<br>.6 (Sync | 66%+5% Q<br>Test 21<br>0.23s<br>test should b<br>ex A2 A.2.2.6 (<br>o trip                                 | 100%+5% P<br>Test 10<br>0.32s<br>e carried out in<br>Synchronous).  |
| table.<br>Test Power and<br>imbalance<br>Trip time. Limit<br>is 0.5 s<br><b>Protection – Fr</b><br>accordance with B<br>Positive Vector SI<br>Negative Vector SI<br><b>Protection – Fre</b><br>procedure in Anne | 33%-5%<br>Test 22<br>0.35<br>equency<br>EREC G9<br>hift<br>Shift<br>quency of<br>ex A.1.2.6 | 6 Q<br>5s<br>7 char<br>8 Ann<br>Start<br>49.0<br>50.0<br>chang<br>6(Inve       | 66%-5% Q<br>Test 12<br>0.42s<br>nge, Vector<br>ex A1 A.1.2.6<br>Frequency<br>Hz<br>Hz<br>Hz<br>e, RoCoF Starter connected | 100%<br>Test =<br>0.:<br>Shift<br>6 (Invert<br>Chang<br>+50 de<br>- 50 de<br>ability f | 6-5% P<br>5<br>27s<br>Stability<br>ter conn<br>e<br>grees<br>grees<br>egrees<br>test: The<br>nnex A2 | 33%<br>Test<br>0<br>/ tes<br>ected<br>C<br>Y<br>Y<br>e requ<br>A.2.2 | +5% Q<br>31<br>.33s<br>t: This<br>) or Anno<br>Confirm r<br>'es<br>'es<br>uirement<br>.6 (Sync | 66%+5% Q<br>Test 21<br>0.23s<br>test should b<br>ex A2 A.2.2.6 (<br>o trip<br>is specified in<br>hronous). | 100%+5% P<br>Test 10<br>0.32s<br>be carried out in<br>Synchronous). |



| <b>Limited Frequency Sensitive Mode – Overfrequency test:</b> This test should be carried out in accordance with EN 50438 Annex D.3.3 Power response to over- frequency. The test should be carried out using the specific threshold frequency of 50.4 Hz and <b>Droop</b> of 10%. |                                   |           |        |                      |                      |                          |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|--------|----------------------|----------------------|--------------------------|--|--|--|
| Test sequence at<br><b>Registered</b><br><b>Capacity</b> >80%                                                                                                                                                                                                                      | Measured<br>Active<br>PowerOutput | Frequency |        | Primary Power Source |                      | Active Power<br>Gradient |  |  |  |
| Step a) 50.00 Hz ±0.01 Hz                                                                                                                                                                                                                                                          | 2000.61                           | 50.01     |        |                      |                      | 100.00%                  |  |  |  |
| Step b) 50.45 Hz ±0.05 Hz                                                                                                                                                                                                                                                          | 1980.51                           | 50.46     |        |                      |                      | 99.00%                   |  |  |  |
| Step c) 50.70 Hz ±0.10 Hz                                                                                                                                                                                                                                                          | 1880.49                           | 50.71     |        |                      |                      | 94.00%                   |  |  |  |
| Step d) 51.15 Hz ±0.05 Hz                                                                                                                                                                                                                                                          | 1700.44                           | 51.16     |        |                      |                      | 85.00%                   |  |  |  |
| Step e) 50.70 Hz ±0.10 Hz                                                                                                                                                                                                                                                          | 1880.49                           | 50.71     |        |                      |                      | 94.00%                   |  |  |  |
| Step f) 50.45 Hz ±0.05 Hz                                                                                                                                                                                                                                                          | 1980.51                           | 50.46     |        |                      |                      | 99.00%                   |  |  |  |
| Step g) 50.00 Hz ±0.01 Hz                                                                                                                                                                                                                                                          | 2000.85                           | 50.0      | 01     |                      |                      | 100.00%                  |  |  |  |
| Test sequence at<br><b>Registered Capacity</b> 40%<br>- 60%                                                                                                                                                                                                                        | Measured<br>Active<br>PowerOutput | Frequency |        | Primary Power Source |                      | Active Power<br>Gradient |  |  |  |
| Step a) 50.00 Hz ±0.01 Hz                                                                                                                                                                                                                                                          | 1000.68                           | 50.01     |        |                      |                      | 50.00%                   |  |  |  |
| Step b) 50.45 Hz ±0.05 Hz                                                                                                                                                                                                                                                          | 990.52                            | 50.46     |        |                      |                      | 49.50%                   |  |  |  |
| Step c) 50.70 Hz ±0.10 Hz                                                                                                                                                                                                                                                          | 940.50                            | 50.71     |        |                      |                      | 47.00%                   |  |  |  |
| Step d) 51.15 Hz ±0.05 Hz                                                                                                                                                                                                                                                          | 850.45                            | 51.16     |        |                      |                      | 42.50%                   |  |  |  |
| Step e) 50.70 Hz ±0.10 Hz                                                                                                                                                                                                                                                          | 940.50                            | 50.71     |        |                      |                      | 47.00%                   |  |  |  |
| Step f) 50.45 Hz ±0.05 Hz                                                                                                                                                                                                                                                          | 990.52                            | 50.46     |        |                      |                      | 49.50%                   |  |  |  |
| Step g) 50.00 Hz ±0.01 Hz                                                                                                                                                                                                                                                          | 1000.54                           | 50.01     |        |                      |                      | 50.00%                   |  |  |  |
| Steps as defined in EN 5043                                                                                                                                                                                                                                                        | 8                                 |           |        |                      |                      |                          |  |  |  |
| <b>Power output with falling</b><br>Annex D.3.2 active power fe                                                                                                                                                                                                                    |                                   |           | should | be carried out       | in accordanc         | e with EN 50438          |  |  |  |
| Test sequence                                                                                                                                                                                                                                                                      | Measured<br><b>Power</b> Outpu    |           |        | Jency                | Primary power source |                          |  |  |  |
| Test a) 50 Hz ± 0.01 Hz                                                                                                                                                                                                                                                            |                                   |           |        |                      |                      |                          |  |  |  |
| Test b) Point between 49.5 and 49.6 Hz                                                                                                                                                                                                                                             | Hz                                |           |        |                      |                      |                          |  |  |  |



| Test c) Poi<br>and 47.6 H                                                                                                                                                 | nt between 47.<br>z                                                  | 5 Hz            |          |                                                                                        |              |            |       |            |                    |            |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------|----------|----------------------------------------------------------------------------------------|--------------|------------|-------|------------|--------------------|------------|-----------|
| NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes                                                                                  |                                                                      |                 |          |                                                                                        |              |            |       |            |                    |            |           |
| Re-connection timer.                                                                                                                                                      |                                                                      |                 |          |                                                                                        |              |            |       |            |                    |            |           |
| Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2. |                                                                      |                 |          |                                                                                        |              |            |       |            |                    |            |           |
| Time<br>delay<br>setting                                                                                                                                                  | Measured<br>delay                                                    |                 |          | Checks on no reconnection when voltage or frequency outside stage 1 limits of table 2. |              |            |       |            | is brought to just |            |           |
| 30s                                                                                                                                                                       | 32s                                                                  |                 | At 266.2 | 2 V                                                                                    | At 196       | At 196.1 V |       | At 47.4 Hz |                    | At 52.1 Hz |           |
|                                                                                                                                                                           | Confirmation that the Micro-<br>generator does not re-connect.       |                 | Yes      |                                                                                        |              | Yes        |       | Yes        |                    | Yes        |           |
| <b>Fault level contribution</b> : These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (Inverter connected) and Annex A2 A.2.3.4 (Synchronous).  |                                                                      |                 |          |                                                                                        |              |            |       |            |                    |            |           |
| For machin                                                                                                                                                                | For machines with electro-magnetic output For <b>Inverter</b> output |                 |          |                                                                                        |              |            |       |            |                    |            |           |
| Parameter                                                                                                                                                                 | r Symbol Value                                                       |                 | lue      | Time after<br>fault                                                                    |              | r Volts    |       | Amps       |                    |            |           |
| Peak Short Circuit current                                                                                                                                                |                                                                      | i <sub>ρ</sub>  |          |                                                                                        | 20 ms        |            | 3.23V |            | 13.05Apeak         |            |           |
| Initial Value of aperiodic current                                                                                                                                        |                                                                      | A               |          |                                                                                        | 100 ms       |            | 0     |            | 0                  |            |           |
| Initial symmetrical short-circuit current*                                                                                                                                |                                                                      | I <sub>k</sub>  |          |                                                                                        | 250 ms       |            | 0     |            | 0                  |            |           |
| Decaying (aperiodic)<br>component of short circuit<br>current*                                                                                                            |                                                                      | i <sub>DC</sub> |          |                                                                                        | 500 ms       |            | 0     |            | 0                  |            |           |
| Reactance/Resistance Ratio of source*                                                                                                                                     |                                                                      | ×/ <sub>R</sub> |          |                                                                                        | Time to trip |            | <20ms |            | In seconds         |            |           |
| For rotating machines and linear piston machines the test should produce a 0 s – 2 s plot of the short circuit current as seen at the <b>Micro-generator</b> terminals.   |                                                                      |                 |          |                                                                                        |              |            |       |            |                    |            |           |
| * Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot                                |                                                                      |                 |          |                                                                                        |              |            |       |            |                    |            |           |
| Logic Interface.                                                                                                                                                          |                                                                      |                 |          |                                                                                        |              |            |       |            |                    | Yes        |           |
| <b>Self-Monitoring solid state switching:</b> No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 ( <b>Inverter</b> connected).                            |                                                                      |                 |          |                                                                                        |              |            |       |            |                    | C          | Yes/or NA |
| It has been varified that in the event of the call state suitables device follow to the                                                                                   |                                                                      |                 |          |                                                                                        |              |            |       |            |                    |            |           |

It has been verified that in the event of the solid state switching device failing to NA disconnect the **Micro-generator**, the voltage on the output side of the switching device is



reduced to a value below 50 V within 0.5 s.

Additional comments