

Form C: Type Test Verification Report

Type Approval and **Manufacturer** declaration of compliance with the requirements of G98.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

If the **Micro-generator** is **FullyType Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to the **DNO**, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98.

Manufactu	urer's reference	ce number	DQ190103	5				
Micro-gen	erator techno	logy	Solis-1P2.	5K-4G				
Manufactu	urer name		Ningbo Gir	Ningbo Ginlong Technologies Co., Ltd.				
Address			ong Road, Seaf gshan, Ningbo, Z	ront (Binhai) Industrial Zhejiang,				
			315712,P.I	315712,P.R.China				
Tel	(+86) 574	6580 3377		Fax	(+86) 574 6578 1606			
E-mail	kun.zhang	@ginlong.com	I	Web site	www.ginlong.com			
		Connection (Dption					
Registered	d Capacity, ate sheet if	2.5	kW single phase, single, split or three phase system					
more than connection			kW three phase					
			kW two ph	ases in three ph	ase system			
			kW two ph	ases split phase	system			
Type Test this docum	ed reference nent, prior to	number will b	- I certify that all products supplied by the company with the above be manufactured and tested to ensure that they perform as stated in site and that no site modifications are required to ensure that the EREC G98.					
Signed	Zhon	ig kun	On behalf o Manufa	of cturer stamp	宁波锦浪新能源科技有限公司 NINGBO GINLONG TECHNOLOGIES CO., LTD.			
	02.Jan	uary.2019						

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

Operating Range: This test should be carried out as specified in EN 50438 D.3.1.

Active Power shall be recorded every second. The tests will verify that the **Micro-generator** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Micro-generator the PV primary source may be replaced by a DC source.

In case of a full converter **Micro-generator**(eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG **Micro-generator**the mechanical drive system may be replaced by a test bench motor.

Test 1 Voltage = 85% of nominal (195.5 V) Frequency = 47.5 Hz Power factor = 1 Period of test 90 minutes	Tested with the specified conditions,in the 9 minutes period of time,the inverters operate normally
Test 2 Voltage = 110% of nominal (253 V). Frequency = 51.5 Hz Power factor = 1 Period of test 90 minutes	Tested with the specified conditions,in the 9 minutes period of time,the inverters operation normally
Test 3 Voltage = 110% of nominal (253 V). Frequency = 52.0 Hz Power factor = 1 Period of test 15 minutes	Tested with the specified conditions,in the 1 minutes period of time,the inverters operate normally

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of Registered Capacity. The test requirements are specified in Annex A1A.1.3.1 (Inverter connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2

Micro-ger (rpp)			2.5		kW	NV=MV*3.68/rpp		
Harmonic	onic At 45-55% of Registered Capacity		100% of Registered Capacity					
	Measured Value MV in Amps	Norma lised Value (NV) in Amps	Measured Value M∖ Amps	/ in	Normali sed Value (NV) in Amps	Limit in BS EN 61000-3-2 in Amps	Higher limit for odd harmonics 21 and above	
2	0.017	0.021	0.038		0.052	1.080		
3	0.082	0.096	0.182		0.218	2.300		

r				1		
4	0.014	0.018	0.011	0.013	0.430	
5	0.063	0.078	0.128	0.157	1.140	
6	0.018	0.022	0.030	0.037	0.300	
7	0.045	0.056	0.073	0.090	0.770	
8	0.012	0.014	0.018	0.022	0.230	
9	0.043	0.052	0.071	0.087	0.400	
10	0.012	0.015	0.012	0.014	0.184	
11	0.026	0.032	0.044	0.054	0.330	
12	0.010	0.013	0.013	0.016	0.153	
13	0.029	0.035	0.039	0.048	0.210	
14	0.004	0.005	0.016	0.020	0.131	
15	0.021	0.026	0.032	0.039	0.150	
16	0.007	0.009	0.017	0.020	0.115	
17	0.007	0.009	0.031	0.038	0.132	
18	0.015	0.018	0.018	0.022	0.102	
19	0.023	0.029	0.019	0.023	0.118	
20	0.010	0.012	0.010	0.012	0.092	
21	0.005	0.006	0.006	0.007	0.107	0.160
22	0.006	0.007	0.027	0.033	0.084	
23	0.006	0.007	0.035	0.043	0.098	0.147
24	0.014	0.017	0.029	0.035	0.077	
25	0.017	0.021	0.009	0.011	0.090	0.135
26	0.006	0.007	0.009	0.011	0.071	
27	0.004	0.005	0.013	0.016	0.083	0.124
28	0.008	0.010	0.023	0.029	0.066	
29	0.012	0.014	0.023	0.028	0.078	0.117
30	0.011	0.014	0.015	0.018	0.061	
31	0.009	0.011	0.019	0.023	0.073	0.109
32	0.017	0.021	0.039	0.047	0.058	
33	0.017	0.021	0.016	0.020	0.068	0.102
34	0.004	0.004	0.022	0.027	0.054	
35	0.006	0.007	0.020	0.024	0.064	0.096
36	0.009	0.012	0.018	0.022	0.051	
37	0.011	0.014	0.007	0.008	0.061	0.091
38	0.008	0.009	0.019	0.024	0.048	
39	0.021	0.026	0.024	0.029	0.058	0.087
40	0.003	0.004	0.005	0.006	0.046	
	•					

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (**Inverter** connected) or Annex A2 A.2.3.3 (Synchronous).

	Starting			Stopping	g		Running	
	d max	dc	d(t)	d max	dc	d(t)	P _{st}	P _{lt} 2 hours
Measured Values at test	0.52	0.38	0	0.36	0	0	0.051	0.070

impedance											
Normalised to standard impedance	N/A	N/A	N/A	\	N/A	N/A	N/A	٨	1	N/A	N/A
Normalised to required maximum impedance	N/A	N/A	N/A		N/A	N/A	N/A	۱.	1	N/A	N/A
Limits set under BS EN 61000- 3-11	4%	3.3%	3.3%	6	4%	3.3%	3.3%	6		1.0	0.65
Test Impedance	R			Ω		х				Ω	
Standard Impedance	R	0.24 * 0.4 ^	¢	Ω		х			15 * 25 ^	Ω	
Maximum Impedance	R			Ω		х				Ω	
Annling to the		1 14									

Applies to three phase and split single phase **Micro-generators**.

^ Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point. Single phase units reference source resistance is 0.4Ω

Two phase units in a three phase system reference source resistance is 0.4 Ω .

Two phase units in a split phase system reference source resistance is 0.24 Ω .

Three phase units reference source resistance is 0.24 Ω .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

Test start date	1.December.2018	Test end date	7.December.2018
Test location	Ningbo Ginlong electri	cal R&D LAB	

Power qualit	y – DC in	jecti	on: Tł	nis test s	hould be carrie	ed out i	n accor	dance with E	N 504	38 Annex D.3.10
Test power le	evel		209	%	50%			75%		100%
Recorded val Amps	ue in		12.1	mA	9.3m/	٩		11.5mA		11.8mA
as % of rated current	AC		0.11	2%	0.087	%		0.103%		0.108%
Limit			0.25	5%	0.25%	/ 0		0.25%		0.25%
	Power Quality – Power factor : This test but with nominal voltage -6% and +10% the test.									
					216.2 V		23	60 V		253 V
20% of Regis	stered Ca	paci	ty		0.954		0.	956		0.953
50% of Regis	stered Ca	paci	ty		0.985		0.	985		0.981
75% of Regis	stered Ca	paci	ty		0.993		0.	995		0.993
100% of Reg	istered C	apac	ity		0.998		0.	.999		0.998
Limit					>0.95		>().95	>0.95	
	ne notes									EN 50438 Annex nnex A2 A.2.2.3
Function		Set	ting		Trip	test		"	No trip	o tests"
	Frequer	псу	Time	e delay	Frequency	Time	delay	Frequency	/time	Confirm no trip
U/F stage 1	47.5 H	lz	2	0 s	47.46Hz	20.0	042s	47.7 Hz 25.3s	Z	Yes
U/F stage 2	47 Hz	2	0	.5 s	46.96Hz	0.5	31s	47.2 Hz 19.98 s		Yes
								46.8 Hz 0.48 s		Yes
O/F stage 1	52 Hz	2	0.	.5 s	52.04Hz	0.5	42s	51.8 Hz 89.98 s		Yes
								52.2 Hz 0.48 s		Yes

Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not

trip in error.

Protection – Voltage tests: These tests should be carried out in accordance with EN 50438 Annex D.2.3 and the notes in EREC G98 Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous)

Function	Set	tting	Trij	o test	"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip	
U/V	184 V	2.5 s	183.5 V	2.546s	186 V 3.50 s	Yes	
					182 V 2.48 s	Yes	
O/V stage 1	262.2 V	1.0 s	262.5 V	1.047 s	260.2 V 2.0 s	Yes	
O/V stage 2	273.7 V	0.5 s	274.0 V	0.544 s	269.7 V 0.98 s	Yes	
					277.7 V 0.48 s	Yes	

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Loss of Mains test: For PV Inverters shall be tested in accordance with BS EN 62116. Other Inverters should be tested in accordance with EN 50438 Annex D.2.5 at 10%, 55% and 100% of rated power.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels.

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 s	0.30s	0.35s	0.40s	0.35s	0.26s	0.36s

For Multi phase **Micro-generators** confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases.

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph1 fuse removed						
Test Power	10%	55%	100%	10%	55%	100%

Balancing load on islanded network	95% of Register Capacity		95% of Registered Capacity	95% o Regis Capa	stered	Reg	5% of gistered pacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph2 fuse removed									
Test Power	10%		55%	100%	, 0	109	%	55%	100%
Balancing load on islanded network	95% of Register Capacity		95% of Registered Capacity	95% o Regis Capa	stered	Reg	5% of gistered pacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph3 fuse removed									
Note for technological establishing that the s for these technological establishing that the s for these technological establishing the second	he trip oc								
Indicate additiona	I shut dov	wn time	e included in	above r	esults.		ms		
For Inverters tes table.	ited to BS	S EN 6	62116 the fo	llowing	sub set	of t	ests shou	Ild be recorde	d in the following
table. Test Power and	ted to BS		62116 the fo	-	sub set 6-5% P	1	ests shou %+5% Q	ıld be recorde 66%+5% Q	d in the following
table.		6 Q		-	6-5% P	339			-
table. Test Power and	33%-5%	6 Q	66%-5% Q	100% Test	6-5% P	339 Tes	%+5% Q	66%+5% Q	100%+5% P
table. Test Power and imbalance Trip time. Limit is 0.5 s	33%-5% Test 22 0.33 equency	% Q 8s chan	66%-5% Q Test 12 0.42s	100% Test 0. Shift	6-5% P 5 22s Stability	339 Tes	%+5% Q st 31 0.31s st: This	66%+5% Q Test 21 0.23s test should b	100%+5% P Test 10 0.32s e carried out in
table. Test Power and imbalance Trip time. Limit is 0.5 s Protection – Fr	33%-5% Test 22 0.33 equency	6 Q Ss chan 8 Anne	66%-5% Q Test 12 0.42s	100% Test 0. Shift	6-5% P 5 22s Stability ter conn	339 Tes y tes	%+5% Q st 31 0.31s st: This	66%+5% Q Test 21 0.23s test should b ex A2 A.2.2.6 (100%+5% P Test 10 0.32s e carried out in
table. Test Power and imbalance Trip time. Limit is 0.5 s Protection – Fr	33%-5% Test 22 0.33 equency EREC G9	6 Q Ss chan 8 Anne	66%-5% Q Test 12 0.42s oge, Vector ex A1 A.1.2.6 Frequency	100% Test 0. Shift 6 (Invert	6-5% P 5 22s Stability t er conn	339 Tes y tes	%+5% Q st 31 0.31s st: This d) or Ann	66%+5% Q Test 21 0.23s test should b ex A2 A.2.2.6 (100%+5% P Test 10 0.32s e carried out in
table. Test Power and imbalance Trip time. Limit is 0.5 s Protection – Fr accordance with B	33%-5% Test 22 0.33 equency EREC G9	6 Q 9s 6 Anne 8 Anne Start	66%-5% Q Test 12 0.42s oge, Vector ex A1 A.1.2.6 Frequency Hz	100% Test 0. Shift 6 (Invert Chang	6-5% P 5 22s Stability ter conn e	339 Tes y te ecte	%+5% Q st 31 0.31s st: This d) or Ann Confirm r	66%+5% Q Test 21 0.23s test should b ex A2 A.2.2.6 (100%+5% P Test 10 0.32s e carried out in
table. Test Power and imbalance Trip time. Limit is 0.5 s Protection – Fr accordance with B Positive Vector SI	33%-5% Test 22 0.33 equency EREC G9 hift Shift quency c	6 Q ss chan 8 Anne Start 49.0 1 50.0 1	66%-5% Q Test 12 0.42s oge, Vector ex A1 A.1.2.6 Frequency Hz Hz Hz	100% Test 0. Shift 6 (Invert Chang +50 de - 50 de ability 1	6-5% P 5 22s Stability ter conn e egrees egrees egrees test: Th	339 Tes y te ecte	%+5% Q st 31 0.31s st: This d) or Ann Confirm r Yes Yes Yes	66%+5% Q Test 21 0.23s test should b ex A2 A.2.2.6 (no trip	100%+5% P Test 10 0.32s e carried out in Synchronous).
table. Test Power and imbalance Trip time. Limit is 0.5 s Protection – Fr accordance with B Positive Vector SI Negative Vector S Protection – Fre procedure in Anne	33%-5% Test 22 0.33 equency EREC G9 hift Shift quency c	6 Q Bs Chan 8 Anne 8 Anne 5 Start 49.0 50.0 50.0	66%-5% Q Test 12 0.42s oge, Vector ex A1 A.1.2.6 Frequency Hz Hz Hz	100% Test 0. Shift 6 (Invert Chang +50 de - 50 de ability f	6-5% P 5 22s Stability ter conn e egrees egrees egrees test: Th	339 Tes ecte	%+5% Q st 31 0.31s st: This d) or Ann Confirm r Yes Yes Yes quirement 2.6 (Sync	66%+5% Q Test 21 0.23s test should b ex A2 A.2.2.6 (no trip	100%+5% P Test 10 0.32s e carried out in Synchronous).
table. Test Power and imbalance Trip time. Limit is 0.5 s Protection – Fr accordance with B Positive Vector SI Negative Vector S Protection – Fre	33%-5% Test 22 0.33 equency EREC G9 hift Shift quency c	6 Q 3s chan 8 Anne 8 Anne 5 Anne 5 Change 6 (Inver Test 1	66%-5% Q Test 12 0.42s oge, Vector ex A1 A.1.2.6 Frequency Hz Hz Hz e, RoCoF States	100% Test 0. Shift 6 (Invert Chang +50 de - 50 de ability f	6-5% P 5 22s Stability ter conn e grees grees egrees test: Thomes A2	339 Tes ecte	%+5% Q st 31 0.31s st: This d) or Ann Confirm r Yes Yes Yes quirement 2.6 (Sync	66%+5% Q Test 21 0.23s test should b ex A2 A.2.2.6 (no trip is specified in hronous).	100%+5% P Test 10 0.32s e carried out in Synchronous).

Test sequence at Registered Capacity>80%	Measured Active PowerOutput	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	2500.61	50.01		100.00%
Step b) 50.45 Hz ±0.05 Hz	2475.51	50.46		99.00%
Step c) 50.70 Hz ±0.10 Hz	2350.49	50.71		94.00%
Step d) 51.15 Hz ±0.05 Hz	2125.44	51.16		85.00%
Step e) 50.70 Hz ±0.10 Hz	2350.49	50.71		94.00%
Step f) 50.45 Hz ±0.05 Hz	2475.51	50.46		99.00%
Step g) 50.00 Hz ±0.01 Hz	2500.84	50.01		100.00%
Test sequence at Registered Capacity 40% - 60%	Measured Active PowerOutput	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	1250.76	50.01		50.00%
Step b) 50.45 Hz ±0.05 Hz	1238.02	50.46		49.50%
Step c) 50.70 Hz ±0.10 Hz	1175.50	50.71		47.00%
Step d) 51.15 Hz ±0.05 Hz	1062.95	51.16		42.50%
Step e) 50.70 Hz ±0.10 Hz	1175.50	50.71		47.00%
Step f) 50.45 Hz ±0.05 Hz	1238.02	50.46		49.50%
Step g) 50.00 Hz ±0.01 Hz	1250.93	50.01		50.00%
Steps as defined in EN 5043	8			

Test sequence	Measured Active PowerOutput	Frequency	Primary power source
Test a) 50 Hz ± 0.01 Hz			
Test b) Point between 49.5 Hz and 49.6 Hz			

Test c) Poi and 47.6 H	nt between 47. z	5 Hz										
NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes												
Re-connection timer.												
Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2.												
Time delay setting	Measured delay			Checks on no reconnection when voltage or frequen just outside stage 1 limits of table 2.					icy is brought to			
30s	32s		At 266.2	66.2 V At 196		δ.1 V At 47.		7.4 Hz	7.4 Hz		At 52.1 Hz	
Confirmation that the Micro- generator does not re-connect.			- Yes		Yes		Yes		Yes			
Fault level contribution : These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (Inverter connected) and Annex A2 A.2.3.4 (Synchronous).												
For machines with electro-magnetic output For Inverte						ter o	er output					
Parameter		Symbol	Value		Time after fault		er Volts		Amps			
Peak Short Circuit current		i _p			20 ms		3.43V		16.35Apeak			
Initial Value of aperiodic current		А			100 ms		0		0			
Initial symmetrical short-circuit current*		I _k			250 ms		0		0			
Decaying (aperiodic) component of short circuit current*		İ _{DC}			500 ms		0		0			
Reactance/Resistance Ratio of source*		×/ _R			Time to trip		<20ms		In seconds			
For rotating machines and linear piston machines the test should produce a 0 s – 2 s plot of the short circuit current as seen at the Micro-generator terminals.												
* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot												
Logic Interface.								Yes				
Self-Monitoring solid state switching: No specified test requirements. Refer to EREC Yes/or G98 Annex A1 A.1.3.6 (Inverter connected).							Yes/or NA					

It has been verified that in the event of the solid state switching device failing to NA disconnect the **Micro-generator**, the voltage on the output side of the switching device is

reduced to a value below 50 V within 0.5 s.

Additional comments